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Abstract. We study the frugality ratio of truthful mechanisms in path
auctions, which measures the extent to which truthful mechanisms “over-
pay” compared to non-truthful mechanisms. In particular we consider
the fundamental case that the graph is composed of two node-disjoint
s-t-paths of length s1 and s2 respectively, and prove an optimal

√
s1s2

lower bound (an improvement over
√

s1s2/2). This implies that the √ -
mechanism of Karlin et al. for path auctions is 2-competitive (an im-
provement over 2

√
2), and is optimal if the graph is a series-parallel net-

work. Moreover, our results extend to universally truthful randomized
mechanisms as well.

1 Introduction

Since the field of algorithmic mechanism design was introduced by Nisan and
Ronen [NR99], path auctions have been studied extensively. In a path auction,
the auctioneer tries to buy an s-t-path from a directed graph, where the edges
of the graph are owned by selfish agents, and the cost of an edge is known
only to its owner. Truthful mechanisms, the VCG mechanism [MCWG95] in
particular, have been applied to path auctions. In such mechanisms, it is of each
agent’s best interest to simply report their private cost. However, as observed
in [AT02, ESS04], every truthful mechanism can be forced to pay a high total
amount to the agents. In contrast, the total payment is relatively small in first
price non-truthful path auctions [IKNS05, CK07]. Such overpayment of truthful
mechanisms compared to non-truthful mechanisms is seen as the price of truth-
fulness [KKT05], which we measure by the notion of frugality ratio of Karlin et
al. [KKT05]. (The notion was actually proposed for all problems in the general
hire-a-team setting [AT01], and Talwar also proposed a notion of frugality ratio
with a different benchmark earlier in [Tal03].) Karlin et al. [KKT05] also pro-
posed the √ -mechanism for path auctions, which is 2

√
2-competitive, i.e., by a

factor of 2
√

2 from optimal w.r.t. frugality ratio.
Behind many results on frugality ratio lies the fundamental case that the

input graph G contains exactly two node-disjoint s-t-paths S1, S2 of length s1

and s2 respectively1, which we call 1-out-of-2 (S1, S2)-auctions. The VCG mech-
anism may overpay badly in this case, and has frugality ratio max{s1, s2}. In
? Part of this work was done while the author was at the BASICS Laboratory of

Shanghai Jiao Tong University
1 We use symbols Si instead of Pi to be consistent with the notations in [KKT05].



[AT02], a 2s1s2
s1+s2

lower bound was proved for the class of min-function (truthful)
mechanisms, and later in [ESS04], a weaker s1s2

s1+s2
bound was obtained for all

truthful mechanisms. Finally in [KKT05], a truthful mechanism with frugality
ratio

√
s1s2 was proposed, and an asymptotic

√
s1s2/2 lower bound was proved

as well, leaving a
√

2 gap open. But it is unlikely that this gap can be closed
by previous proof methods, and our understanding of the overpayment issue in
even this simple case is not complete.

Our Results In this paper, we introduce the interesting technique of mechanism
canonicalization, and close the abovementioned gap by proving the following
result, which to our knowledge is the first nontrivial tight lower bound known
for frugality ratios. Moreover, this result can be extended to universally truthful
randomized mechanisms [NR99] as well.

Theorem 1. The frugality ratio of 1-out-of-2 (S1, S2)-auctions is Φs1,s2 =
√

s1s2.

1-out-of-2 auctions are embedded in not only path auctions, but also many other
problems, including vertex cover [EGG07], minimum cost bipartite matching etc.
It follows that lower bounds about 1-out-of-2 auctions extend to those problems
by reductions. In particular, for path auctions:

Theorem 2. The √ -mechanism for path auctions is 2-competitive in general,
and is optimal if the input graph is a series-parallel network.

2 The Model

In the setting, G = (V,E) is a directed graph where V contains two fixed vertices
s and t. Each edge e in E represents a selfish agent, and has a privately known
nonnegative cost ce

2, which occurs if the agent is selected. A path auction consists
of two steps. First each agent e submits a sealed bid be to the auctioneer. Then
based on the bids, the auctioneer applies a selection rule to select an s-t-path P
as the winning path, and pays an amount pe ≥ be to each agent in P . We say that
the agents in P win, and the others lose. The selection rule and payment rule
together constitute a mechanism for G. We assume that each agent is rational,
fully knows about G and the mechanism, and aims at maximizing his own profit,
which is pe − ce if he wins, and 0 otherwise. As is standard, we assume that G
has no s-t cut edge, otherwise there would be a monopoly.

We say that a mechanism is truthful, if each agent e can maximize his profit
by bidding his true cost ce, i.e., be = ce, no matter what the others bid. There
are two characteristic properties about truthful mechanisms: [AT01, AT02]

The Monotonicity Property If a mechanism is truthful, then the associated
selection rule is monotone, i.e., a winning agent still wins if he decreases his
bid, given fixed bids of the others.

2 For costs, bids, etc., we extend the notation by writing c(T ) for
∑

e∈T ce, etc.



The Threshold Property Given a monotone selection rule, there is a unique
truthful mechanism associated with this selection rule. Moreover, this mech-
anism pays each agent the threshold bid, i.e., the supremum of the amounts
that the agent can still win by bidding, given fixed bids of the others.

Let M be a truthful mechanism for G. Given the cost vector c (or equivalently,
bid vector, sinceM is truthful) of the agents, let pM(c) denote the total payment
made byM to the agents. We use ν(c) to denote the benchmark for overpayment,
whose definition we omit here. But in 1-out-of-2 (S1, S2)-auctions, ν(c) simply
equals to the maximum of c(S1) and c(S2). The frugality ratio φM of a truthful
mechanism M is supc 6=0 ρM(c), where ρM(c) = pM(c)/ν(c), and the frugality
ratio ΦG of a graph G, or the path auction on G, is the infimum of φM over all
truthful mechanisms for G.

3 1-out-of-2 Auctions

In this section, we show that the frugality ratio Φs1,s2 of 1-out-of-2 (S1, S2)-
auctions is exactly

√
s1s2. For brevity, every mechanism we mention here is a

truthful mechanism for 1-out-of-2 (S1, S2)-auctions. Consider the mechanism M
such that the Si with the least value of

√
si · c(Si) is selected from i = 1, 2

with ties broken arbitrarily. One can verify that ΦM ≤ √
s1s2. To see this, let

the costs of the agents be c, and w.l.o.g. let S1 wins. Then the threshold bid
of each agent e ∈ S1 is at most

√
s2 · c(S2)/

√
s1. So ρM(c) ≤ pM(c)/ν(c) ≤√

s1s2 · c(S2)/ν(c) ≤ √
s1s2, and hence Φs1,s2 ≤

√
s1s2. We devote the rest of

this section to lower bound.
To fix some conventions, we use R+ to denote the set of nonnegative reals.

If w is a vector in Rn
+, then wi denotes its ith component. A vector function t:

Rm
+ → Rn

+ is seen as an n-tuple of functions tj : Rm
+ → R+ for 1 ≤ j ≤ n. We

say that vector w ∈ Rn
+ is dominated by vector w′ ∈ Rn

+, or write w � w′, if
wi ≤ w′i for all i. We let ei denote the unit vector with the ith component 1 and
others 0. Agents in Si are numbered from 1 to si for i = 1, 2. We say that Si

wins at (u,v) if Si is selected when the costs c of the agents are (u,v), where
each ui is the cost of agent i in S1, and each vj is the cost of agent j in S2.
We also assume w.l.o.g. that S2 wins at (u,0) if u 6= 0 and S1 wins at (0,v) if
v 6= 0.

3.1 The tM Function

For a mechanism M, function tM: Rs1
+ → Rs2

+ is defined as tMj (u) = sup{y: S2

wins at (u, yej)}, for all u ∈ Rs1
+ and 1 ≤ j ≤ s2.3 We find the following way of

visualization helpful. Let s2 = 2, and refer to Fig. 1. The solid curve indicates
the boundary between the area where S2 wins and the area where S1 wins. (If
s2 > 2, then the boundary is a surface instead.) By the monotonicity property,

3 We may drop the superscriptM when the context is clear.



loosely speaking, the boundary monotonically decreases. Also by the threshold
property, if S2 wins at (u,v), the payment to the agents in S2 is the total length
of the two segments crossing at v. With such intuition, it is easy to observe the
following properties.

v1

v2

(0, 0)

v

t(u)

S2 wins

S1 wins
boundary w.r.t. u

Fig. 1.

Lemma 1. (i) If S2 wins at (u,v), then v � t(u). In addition, agent j in S2

is paid at most tj(u) for all 1 ≤ j ≤ s2.
(ii) If u � u′ then t(u) � t(u′). I.e., t respects the dominance relation.
(iii) For a mechanism M, φM equals to the maximum of supu 6=0 ρM(u,0) and

supv 6=0 ρM(0,v). In addition, ρM(u,0) equals to
∑s2

j=1 tj(u)/
∑s1

i=1 ui and
ρM(0,v) equals to

∑s1
i=1 sup{x: S1 wins at (xei,v)}/

∑s2
j=1 vj.

3.2 Mechanism Canonicalization

For each mechanism M, in the following we canonicalize M into a type-1
mechanism M1, and then into a type-2 mechanism M2, and finally into a
type-3 mechanism M3 respectively. In the process, frugality is preserved, i.e.,
φM ≥ φM1 ≥ φM2 ≥ φM3 . It follows that Φs1,s2 can be determined by analyzing
the infimum of φM3 over all type-3 mechanism M3, while the special properties
of the class of type-3 mechanisms can be taken advantage of in the analysis. We
call such technique as mechanism canonicalization.

Type-1 Mechanisms For a mechanism M, we first canonicalize it into the
mechanism M1 such that S2 wins at (u,v) in M1 iff v � tM(u). One can
verify that the selection rule of M1 is monotone, and such canonicalized mech-
anisms are called type-1 mechanisms. In particular, it is guaranteed that φM1 ≤
φM. To verify this via Lemma 1(iii), we need to show that sup{x: S1 wins at
(xei,v) in M1} ≤ sup{x : S1 wins at (xei,v) in M}. This is true because if
S2 wins at (xei,v) in M for some i, x,v, then v � tM(xei) by Lemma 1(i), and
then by the definition of M1, S2 wins at (xei,v) in M1 too.

The following follows directly from Lemma 1(iii).



Lemma 2. Let M1 be a type-1 mechanism. Then φM1 ≤ r if and only if con-
ditions (a) and (b) hold:

(a) For all u 6= 0, ρM1(u,0) =
∑

j tj(u)/
∑

i ui ≤ r.

(b) For all v 6= 0, ρM1(0,v) =
∑

i sup{x : v � t(xei)}/
∑

j vj ≤ r.

Type-2 Mechanisms Note that each type-1 mechanismM1 can be determined
by its tM1 function (denoted by t for brevity) . Consider the t̂ function such
that for all u in the form of uiei for some i, t̂(uiei) = t(uiei), and for all other
u, t̂(u) =

∑
i t̂(uiei). We then canonicalize M1 into M2, which is the type-1

mechanism determined by the t̂ function, i.e., tM2 = t̂. Each such M2 is called
a type-2 mechanism. One can verify that t̂ respects the dominance relation, and
therefore the selection rule of M2 is monotone. Clearly type-2 mechanisms are
determined by their t(uiei) functions, and it turns out that Lemma 2 can be
correspondingly refined to the following.

Lemma 3. Let M2 be a type-2 mechanism. Then φM2 ≤ r if and only if the
following conditions hold:

(a’) For all ui 6= 0 and i, ρM2(uiei,0) =
∑

j tj(uiei)/ui ≤ r.
(b’) For all vj 6= 0 and j, ρM2(0, vjej) =

∑
i sup{x : tj(xei) < vj}/vj ≤ r.

Note that tM2(uiei) = tM1(uiei) for all ui and i, and so by Lemma 3, we have
φM2 = φM1 .

Type-3 Mechanisms In a type-2 mechanism M2, if each tM2(xei) function
(denoted by t(xei) for brevity) is a curve, i.e., a continuous mapping from R+

to Rs2
+ , we say that it is a type-3 mechanism.

Lemma 4. For each type-2 mechanism M2, there is a canonicalized type-3
mechanism M3 such that φM3 = φM2 .

3.3 Determining Φs1,s2

Based on the canonicalization process, Φs1,s2 ≤ r is equivalent to that there is a
type-3 mechanism M3 with φM3 ≤ r. Since a type-3 mechanism is determined
by its t(xei) functions, this equivalence can be rephrased as follows: (with each
t(xei) renamed to gi)

Theorem 3. Φs1,s2 ≤ r if and only if there exist curves g1, . . . ,gs1 : R+ → Rs2
+

such that the following conditions are satisfied:

(i) gi(x) � gi(x′) for all 1 ≤ i ≤ s1 and x ≤ x′.
(ii)

∑
j gi

j(x) ≤ xr for all 1 ≤ i ≤ s1 and x.
(iii)

∑
i sup{x : gi

j(x) ≤ y} ≤ yr for all 1 ≤ j ≤ s2 and y.



So the problem of determining Φs1,s2 is converted to an equivalent pure math
problem about curves, which can be solved by applying the Young’s Inequality.

Proof. (of Theorem 1) First note that one can prove that Φs1,s2 ≤
√

s1s2 via
Theorem 3 by setting r =

√
s1s2 and gi

j(x) =
√

s1/s2 · x for all i, j. To prove
that Φs1,s2 ≥

√
s1s2, let g1, . . . ,gs1 and r satisfy the conditions in Theorem 3.

By (b) of Theorem 3,
∑

j′ gi
j′(gi

−j(y))/r ≤ gi
−j(y) for all i, j. Add a summa-

tion over i, and then by (c),
∑

i

∑
j′ gi

j′(gi
−j(y))/r ≤

∑
i gi
−j(y) ≤ yr, for all j.

Denote gi
j′(gi

−j(y)) by hi
j→j′(y), add another summation over j, and we have∑

i

∑
j

∑
j′ hi

j→j′(y) ≤ s2r
2y. Note that each hi

j→j′(y) is increasing, and hence
we can define its integral function: Hi

j→j′(y) =
∫ y

0
hi

j→j′(z)dz, for all i, j, j′. As-
sume for simplicity that each hi

j→j′ is monotone. Then by applying the Young’s
Inequality, Hi

j→j′(y)+Hi
j′→j(y) ≥ y2 for all i, j, j′. So 1

2s2r
2y2 ≥

∑
i

∑
j

∑
j′ Hi

j→j′(y) ≥
1
2s1s

2
2y

2, and thus r ≥ √s1s2. It follows that Φs1,s2 ≥
√

s1s2 by Theorem 3.
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