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Abstract

We propose to study revenue-maximizing auctions in the prior-independent analysis
framework. The goal is to identify a single auction mechanism for all underlying
valuation distributions, so that its expected revenue approximates that of the optimal
mechanism tailored for the underlying distribution, under standard weak conditions
on the distribution.

We use the prior-independent analysis framework to analyze natural and practical
auction mechanisms such as welfare-maximization with reserve prices, limiting supply
to induce artificial scarcity, sequentially posting prices, etc. Our framework allows us
to argue that these simple mechanisms give near-optimal revenue guarantee in a very
robust manner.
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Chapter 1

Introduction

1.1 Roadmap

This thesis is about a new way of looking at auction mechanisms, namely the prior-
independent way. In particular, we look at the average performance (often revenue)
of a mechanism over an underlying prior distribution that is not available to the
mechanism, yet we demand that the mechanism has good performance compared
to an optimal mechanism tailored for the distribution. In particular we want the
guarantee to be true for every possible underlying prior.

Our prior-independent way is different from the standard prior-dependent average-
case way of economics, or the prior-free or worst-case way of computer science. As
a middle ground approach between these two, our prior-independent way leads to
new insights and new results, as described in [25, 76, 66, 46]. This thesis aims to be
a coherent summary of all these results. (Differences in organization and treatment
from the original papers are outlined in Section 1.9). The rest of the thesis is organized
as follows.

In the rest of this chapter, we introduce some background on auction mechanism
design, motivate the prior-independent analysis framework, and briefly summarize
our main results.

2



CHAPTER 1. INTRODUCTION 3

In Chapter 2, we discuss Bayesian mechanism design, surveying some of the
most important results, notably Myerson’s optimal auction theory and the Bulow-
Klemperer theorem, and at the same time, fix our terminology and notations.

In Chapter 3, we formally define the prior-independent analysis framework, study
the digital goods case with two bidders to extract several important ideas, and show
a general reduction to Bulow-Klemperer-style statements.

In Chapters 4, 5, and 6, we present three approaches to prior-independent mecha-
nisms, which are based on VCG with sampled reserves, supply limiting, and sequential
posted prices, respectively.

In Chapters 7 and 8, we propose to consider prior-free mechanisms that ap-
proximate the envy-free optimal revenue benchmark. Such mechanisms have prior-
independent guarantees as well as good worst-case guarantees for every input. No-
tably, such results are achieved via a connection to a theory of optimal envy-free
outcomes, which can be of independent interest.

Finally, we conclude with several open directions in Chapter 9.

1.2 Background: Auction Mechanism Design

Auctions Auctions have a long history, and have been commonly used for the selling
of collectibles, automobiles, real estate, electricity, etc. Recently, with the surge of In-
ternet applications, auctions have also been used extensively to allocate advertisement
space of search engines. (see e.g., [72], for an introduction to Auctions)

We interpret the notion of auctions very broadly, allowing it to contain essentially
all selling procedures where buying agents’ valuations are private. Roughly speaking,
an auction is a process of allocating goods or resources, where the buying agents, or
bidders, who want the goods bid or report how much they value the goods, and the
auctioneer, or the seller, will use these bids to determine who win the goods, and how
much they pay. An auction mechanism refers to the allocation rule for determining
who gets what items and the payment rule for determining how much to charge each
winner. Note that agents may report fake valuations for their own sake, and this
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is one of the distinguishing features that set auctions apart from other allocation
procedures.

Examples Two canonical examples of auctions include the well-known first-price
auction and second-price auction. Consider the sealed-bid format, where every bidder
submits a bid for an item in an envelope to the auctioneer. In both auction formats,
the highest bidder wins. In a first-price auction, the highest bidder pays the amount
she bids, while in a second-price auction, the highest bidder pays the amount the
second highest bidder bids. We highlight an important difference between these two
formats. In a first-price auction, if a bidder bids her true value, her utility (value
minus payment) is at most 0, and she is incentivized to bid lower than her true value.
On the other hand, in a second-price auction, it is not difficult to verify that a bidder
maximizes her utility by bidding her true value, no matter what the other bidders
do. In this sense we say that second-price auction is truthful, or ex post incentive
compatible (or ex post IC or even simply IC in short).

Truthfulness Truthful mechanisms are desirable in many ways. From each bid-
ding agent’s perspective, the problem of deciding what to report is made very simple,
as she is incentivized to simply report the truth. From the auctioneer’s perspective,
when agents are not exploring different bids to game the system, the auction’s out-
come is much more stable, predictable, and easier to optimize. In this thesis, we will
focus on the design of truthful mechanisms, and their revenue guarantees. By default,
a mechanism is truthful in this thesis.

On Non-Truthful Mechanisms When agents’ values are drawn from distribu-
tions, it is also natural to study mechanisms under the weaker solution concept of
Bayes-Nash equilibrium. As we will mention in Remark 2.13, Myerson [61] proved
that such a relaxed solution concept does not give us additional power in (expected)
revenue maximization. As our primary goal is revenue maximization, it is without
loss of generality that we will confine ourselves to truthful, or ex post IC mechanisms
in this thesis.
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1.3 An Algorithmic View

In the past decade, mechanism design has attracted the attention from many com-
puter scientists. One main reason is that with the surge of Internet applications, a lot
of algorithmic problems now involve the participation of self-interested agents, and
for an algorithm to behave properly, incentives must be taken into consideration. In
other words, algorithms for the Internet are essentially mechanisms.

On the other hand, a somewhat technical but also important reason is that mech-
anism design is very similar to algorithm design.

allocation
(who gets which item)

payments

inputs
(reported values
or bids for items)

Mechanism

self-interested
agents

Alice

Bob

Carol

...

$10

$2

outputs

$4

Figure 1.3.1: A Mechanism As An Algorithm

Mechanisms As Algorithms We depict the working of a (sealed-bid) mech-
anism in Figure 1.3.1. In words, a mechanism can be seen as an algorithm that
transforms the input, which is bids from the agents, to output, which is allocation
and payments. What makes a mechanism different from a standard algorithm is that
a mechanism needs to obey incentive constraints.

Mechanism ≈ Monotone Algorithms Interestingly, for many auction envi-
ronments, it can be proved that the incentive constraints translate into certain mono-
tonicity conditions. For the class of single-dimensional domains, the monotonicity
condition simply says that if you bid more, you win more (you are more likely to
win) [61, 6]. For the class of multi-dimensional domains, certain monotonicity con-
ditions also exist, albeit less intuitive (see e.g.,[67]). In other words, the design of
truthful mechanism boils down to the design of monotone algorithms, which makes
the problem even more algorithmic in nature.
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Average-Case vs. Worst-Case Analysis Interestingly, for cultural and various
reasons, economists traditionally analyzed mechanisms using average-case analysis,
which is different from the common choice of worst-case analysis used by computer
scientists to analyze algorithms. This difference appears to be huge, but seen from a
different angle, it also suggests the possibility of cross-fertilization. After all, mecha-
nisms are similar to algorithms, and economists and computer scientists simply have
been looking at them from two different perspectives. Each of these two angles has
its pros and cons, and there should be opportunities in achieving the pros of both,
while alleviating the cons. Indeed, this is one of the main goals of this thesis.

1.4 Average-Case Analysis

We first look at average-case analysis, and understand why it is a natural choice for
mechanism design.

Remember that we aim to study revenue-maximizing mechanisms. However, for-
malizing this goal can be tricky. As shown by the following example, there is no single
mechanism that is optimal for revenue for every input.

Example 1.1. Consider the case of a single agent and a single item of good, where the
agent has a value of v for the good. Any truthful mechanism corresponds to offering
a fixed price p in this case, and we have a sale if and only if v ≥ p. So for a fixed v,
the optimal revenue is achieved by the mechanism that sets p to be exactly equal to
v. Therefore, for different input values, the mechanisms that maximize revenue are
in general different.

In other words, there is no single mechanism that is optimal for all inputs. Ideally,
we want to quantify a mechanism’s revenue performance using a single scalar number,
so that it is easy to compare the performance of different mechanisms. A natural
way to achieve this is then to specify weights or probabilities to different inputs, by
imposing a probability distribution on top of them.

In average case analysis, as is commonly used in the economics literature, we
assume that the input values are drawn from a probability distribution. Commonly,
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we assume that each agent’s value is drawn from a distribution independently. Often
these distributions are assumed to be identical too.

Example 1.2. Now given a distribution over inputs, every mechanism’s revenue
performance can be measured by a single scalar value, which is the expected revenue
of the mechanism over the distribution. Importantly, this implies that an optimal
mechanism exists. In fact, for single-dimensional domains, Myerson’s seminal work
characterizes the optimal mechanisms for revenue. The following states Myerson’s
result in the case of single-item auction and symmetric bidders. (The regularity
condition will be defined in Section 2.3.)

Theorem 1.3 (Myerson’81). For a single-item auction over n bidders whose values
are drawn i.i.d. from a regular distribution F , an optimal mechanism that maximizes
expected revenue is the second-price auction with the monopoly reserve price p∗ =

argmaxpp · (1− F (p)).

Note that to run the optimal mechanism, it is crucial here that we know about
the distribution F beforehand, as it is needed for computing the monopoly price p∗.
For more general settings, Myerson’s optimal mechanisms correspond to so-called
virtual surplus maximizers, which depend on the distribution information in much
more complicated ways.

1.4.1 Problems with the Known Distribution Assumption

By the previous discussion, distribution information is crucial in allowing us to com-
pare the revenue performance of different mechanisms. However, assuming that the
distribution information is given to us beforehand can be problematic in various ways.

1. It is often difficult to estimate the distribution information accurately.

This can be the case for various reasons. For example, we may not have enough
access to the distribution information to form a meaningful estimate, or the
distribution actually changes over time.

2. Estimating distribution information involves incentive issues.
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When one tries to estimate distribution information, one needs to be careful
about incentive compatibility. For example, a common approach would be to
run a market survey. But agents then might be tempted to lie in the market
survey, hoping to benefit themselves in the later auction phase. We need to
take such incentive issues into consideration.

Essentially, obtaining distribution information is something that every mechanism
designer needs to do. In a sense it is in fact part of the mechanism design process.
However, by assuming that the distribution is given, it is not possible for us to study
this important part of the process in a formal way.

1.5 Worst-Case Analysis

In the past decade, computer scientists have also studied mechanism design, but
mostly from a prior-free or worst-case point of view prior to the work described in
this thesis. Many works have been done for problems such as digital goods auctions
[37], which models the selling of software licenses or digital music downloads, with or
without a supply limit on the total number of goods sold.

By the previous discussion, there is no single mechanism that is optimal for every
input. To be able to conduct worst-case analysis, for every input profile v that
contains the values of agents, we need to decide on a revenue benchmark B(v) to
compare to. It is in fact not clear what makes a meaningful revenue benchmark. For
simple settings like digital goods, researchers have chosen such benchmarks in an ad
hoc manner. For example, in [36], the “best single-price revenue” benchmark F(v)

was proposed for digital goods auctions, which appears to be a natural and amenable
choice. Unfortunately, this benchmark turns out to be too strong to work with, and
people instead work with the slightly modified F (2) benchmark, which is the best
single price revenue from selling at least two items.

Given such a point-wise benchmark, the researchers’ goal was then to look for a
mechanism M such that for every input profile v, the revenue of M over v is at
least a ρ fraction of the benchmark F (2)(v), where we want ρ to be a constant that
is as large as possible. Unfortunately, due to the worst-case nature of the analysis,
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the approximation ratio ρ we get is often less than desirable. Prior to works in this
thesis, the best known ratio was 1

3.25
for the simple setting of digital goods auction

with the F (2) benchmark [43], and 1
6.5

for multi-unit auctions. (The approximation
ratio we achieve with our new analysis framework will be max{1

2
, 1− o(1)} for these

two cases.) Moreover, the mechanisms that are tailored to achieve best worst-case
approximation ratio tend to be highly unnatural and impractical.

1.5.1 Hartline-Roughgarden’s Revenue Benchmark

Hartline and Roughgarden [44] proposed to use the optimal revenue OBO(v) from
a Bayesian optimal mechanism as a point-wise benchmark for input v. There are
several benefits of this new benchmark.

First for all single-dimensional auction environments, Bayesian optimal mecha-
nisms are fully characterized. Therefore the benchmark is explicitly defined for a
wide range of environments.

Second, if a mechanism can approximate such a benchmark point-wise for every
input, it follows that if the input is drawn from a distribution satisfying weak assump-
tions, then the mechanism’s expected revenue also approximates that of the optimal
mechanism tailored for the distribution.

Overall, the Hartline-Roughgarden approach gives a systematic way of defining
prior-free revenue benchmarks that is well-grounded in Bayesian optimal auction the-
ory. However, it is still worst-case in nature. As an outcome, the approximation
ratios proved based on this approach tend to be less than desirable (worse than 1

10

for the specific problem studied in [44]).

1.6 Our Prior-Independent Analysis Framework

The Hartline-Roughgarden approach connects worst-case analysis to average-case
analysis in the sense that a worst-case approximation to a suitable benchmark implies
approximation guarantees in the average-case as well, with a constant factor loss in
approximation ratio.
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Worst-Case Analysis Average-Case Analysis
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Robustness Optimality

Figure 1.6.1: Trade-Off in Analysis Frameworks

We, on the other hand, propose the notion of parameterized prior-independent
approximation, which contain both average-case and worst-case analyses as special
cases with somewhat extreme choices of the parameter. We then pick the parameter
carefully to identify a middle ground between these two to achieve desirable properties.

1.6.1 Optimality vs. Robustness

To generalize both average-case and worst-case analyses, we observe that informally,
in choosing analysis frameworks, there seems to be an inherent trade-off between
optimality and robustness, where average-case analysis is on the optimality side, and
worst-case analysis is on the robustness side (see Figure 1.6.1). In particular, in
average-case analysis, with given distribution information, we can achieve optimal
revenue using Myerson’s mechanism for a variety of settings, but the guarantee fails
if the distribution turns out to be inaccurate, which is not very robust. On the
other hand, in worst-case analysis, we can only achieve approximate optimality with
a constant ratio, but the guarantee holds robustly no matter what the input is.

A natural question is then whether there a middle ground between these two
analysis frameworks, where we can achieve a balanced trade-off between optimality
and robustness. To identify such a middle ground, it is important that we first
formalize the optimality versus robustness trade-off.

1.6.2 Formalizing the Optimality vs. Robustness Trade-Off

We formalize the trade-off between optimality and robustness using the notion of
parameterized prior-independent approximation.

Definition 1.4 (Parameterized Prior-Independent Approximation). Suppose we are
given the following two parameters:
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Robustness Parameter A distribution class C.

Optimality Parameter An approximation ratio ρ ∈ [0, 1].

• We say that a mechanismM gives a prior-independent ρ-approximation w.r.t.
distribution class C, if for all distribution F ∈ C,

Ev∼F [revenue(M,v)] ≥ ρ · Ev∼F [revenue(OPTF ,v)],

where OPTF denotes Myerson’s optimal mechanism tailored for F .

• In particular, we require that M does not know the specific F except that it
comes from C.

In other words, we do still assume that the inputs are drawn from a distribution,
but this distribution is unknown to the mechanism. Despite this handicap, we re-
quire that the performance of our mechanism is approximately as good as an optimal
mechanism that is tailored for the distribution.

Intuitively, the robustness parameter controls how widely our guarantee should
hold, and the optimality parameter controls how close we are to optimal.

As shown by the examples below, parameterized prior-independence generalizes
both average-case analysis and worst-case analysis as somewhat extreme special cases.

Example 1.5 (Average-Case Analysis). Average-case analysis with distribution F is
equivalent to parameterized prior-independent approximation with C = {F}, where
ρ can be as good as 1.

Example 1.6 (Worst-Case Analysis). Worst-case analysis is equivalent to parameter-
ized prior-independent approximation where C contains all (degenerate) distributions
over single-point supports. Here ρ cannot be 1, and cannot be too close to 1 in
general.

Now that we have formalized the optimality vs. robustness trade-off, which is
mostly controlled by the choice of distribution class C, to find a balanced middle
ground, we should look for a class of distributions that is large enough to capture
most “natural” distributions, while still allowing ρ to be good.
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Worst-Case Analysis Prior-Independence Average-Case Analysis
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Robustness Balance Optimality

Figure 1.6.2: Prior-Independence As A Balance Point

1.6.3 Independent Regular Distributions

In this thesis, our default choice of distribution class C is the class of independent
regular distributions. We will define the regularity condition in Chapter 2. For
now it suffices to say that it is a standard condition in auction theory that contains
most common distributions such as uniform, exponential, normal, and log-normal
distributions.

As we show in Example 3.5, prior-independence is not possible with completely
arbitrary distributions. We choose the class of regular distributions very carefully:

1. This class is sufficiently general so that (1) it contains most common distribu-
tions, and (2) for the most part, Myerson’s theory uses regularity as the standard
condition (although it can be extended to irregular distributions as well). So
our prior-independent theory is no less general than much of Myerson’s theory.

2. The class is not so general that we are forced to derive complicated mechanisms
with poor approximation ratios. In fact, the mechanisms we end up proposing
are simple and natural ones, with good ratios. On the other hand, in the
chapters on prior-free mechanisms, we relax the regularity assumption to tail-
regularity assumption, and for those cases simple mechanisms fail to work.

To summarize, our opinion is that the class of regular distributions is a sweet-spot
that gives a good balance between optimality and robustness.



CHAPTER 1. INTRODUCTION 13

1.7 Prior-Independent Mechanisms

1.7.1 Mechanism with a Single Dial

For now we assume that agents are a priori indistinguishable, or in other words their
valuation distributions are identical (and independent). We often adopt a three-step
approach toward prior-independent mechanisms.

1. Identify a class of simple mechanisms, which are controlled by a single param-
eter1 (such as price, supply limit, etc.).

We study three classes of such mechanisms, which are:

(a) Welfare-maximizing VCG with a reserve price.
Here the reserve price is the parameter.

(b) Welfare-maximizing VCG with a supply limit.
Here the supply limit, or the number of items available, is the parameter.

(c) Sequential posted-price mechanisms.
Here the price we post for the agents is the parameter.

2. Prove that there is a choice of the parameter based on distribution informa-
tion, so that the mechanism achieves approximately-optimal revenue. (This has
already been done in previous work for some of the above mechanisms.)

3. Prove that we can set this parameter without knowledge about the prior, at a
bounded loss compared to step 2.

We remark that the mechanisms we obtain at the end are based on simple modifica-
tions to revenue-maximizing strategies that naturally occur in practice. They are also
in general simpler than Myerson’s virtual surplus maximizers, which rely on complete
distribution information to be able to compute so-called virtual values for allocation
(see Section 2.4).

1In some general environments, we will allow multiple parameters, e.g., one reserve price for each
bidder.



CHAPTER 1. INTRODUCTION 14

1.7.2 VCG with Sampled Reserve

The celebrated VCG mechanism [73, 21, 38] allocates to maximize welfare, or total
values of the winners. In Chapter 4, we study our first type of prior-independent
mechanism, which is based on VCG with a sampled reserve price. Loosely speaking,
we set reserve prices for bidders based on other participants’ bids, and then run the
VCG mechanism with these reserve prices to maximize welfare. Such mechanisms
are natural to bidding agents, as welfare-maximization and reserve pricing are among
the most common things that auctions do in practice. In contrast, Myerson’s optimal
mechanism might need to calculate virtual values, which can be difficult to understand
for agents.

Interestingly, we prove that if we use a single bidder’s bid as the reserve price, we
can achieve a good constant factor approximation. An interpretation of this result
is that even a single sample from a distribution — some bidder’s valuation — is
sufficient information to obtain approximately-optimal revenue.

1.7.3 Supply-Limiting Mechanisms

In Chapter 5, we study our second type of mechanism, which is based on artificially
limiting the supply. In such a mechanism, we do not explicitly set any prices. Instead,
we make sure that only a limited fraction of total available items are allocated, so
that agents have to compete for the items, which drives up the prices they end up
paying.

It turns out that for a variety of settings, by simply halving the available supply,
we can already achieve prior-independent constant factor approximation. Notably,
this supply-limiting approach applies to a multi-dimensional matching problem. For
such multi-dimensional domains, identifying the optimal mechanism is considered a
difficult problem.

1.7.4 Sequential Posted-Price Mechanisms

In Chapter 6, we study our third type of mechanisms, which is based on Sequential
Posted-price Mechanisms (SPMs). In such a mechanism, we make take-it-or-leave-it
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pre-determined price offers to agents according to a pre-determined fixed ordering.
Such a mechanism resembles the Buy-It-Now mechanism available on eBay, and how
we sell goods like bikes to friends.

Chawla et al. [19] proved that such simple mechanisms can achieve approximately-
optimal revenue. We give a more structured proof of this fact using the notion of
correlation gap and submodularity. Then based on the insights from the new proof,
we show how to set the price in an SPM without knowing the prior distribution, while
still achieving approximately-optimal revenue.

1.7.5 Reduction to Bulow-Klemperer-Style Statements

A Bulow-Klemperer-style statement says that instead of running the optimal mecha-
nism over the original environment, we can achieve expected revenue that is (approx-
imately) as good by first expanding the environment by drawing more bidders (from
the same distribution), and then running the VCG mechanism. Such a statement is
prior-independent in nature, except that we need more bidders that are not available
in the original environment.

In Section 5.3, we present a general reduction, for both single-dimensional and
multi-dimensional environments, showing that proving prior-independent approxima-
tion can be reduced to proving a corresponding Bulow-Klemperer-style statement. We
apply this reduction to prove prior-independent approximation guarantees in Section
4.4 and in Chapter 5.

1.8 Prior-Free Mechanisms and Envy-Freeness

A prior-independent guarantee is a guarantee in expectation. One would often hope
for a more robust guarantee that holds for every input profile point-wise. However,
it is not clear what it means to have good guarantee for every input.

To this end, in Chapters 7 and 8, we propose to consider the concept of envy-
freeness that is tightly related to truthfulness. Unlike truthfulness, for every input
profile, there is an envy-free outcome that is optimal in revenue. We characterize the
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optimal revenue of an envy-free outcome as the (ironed) virtual surplus maximizer,
which parallels Myerson’s theory for optimal truthful mechanisms, and propose to
use this optimal revenue as a point-wise revenue benchmark. We prove that this
benchmark is well-motivated in the sense that if a mechanism can approximate this
benchmark for every input, then prior-independent approximation follows automati-
cally for a variety of settings. Correspondingly, we give mechanisms that approximate
the envy-free optimal benchmark for general settings.

1.9 Differences From Original Papers

This thesis aims to be a coherent summary of our works related to prior-independence,
as published in [25, 76, 66, 46]. What’s new or different is summarized below:

• Chapter 2 revisits Bayesian mechanism design. We present the cleanest known
proofs wherever possible.

• Chapter 3 contains the basic definitions of prior-independence, a case study
for the digital goods case with two bidders, and a general reduction to Bulow-
Klemperer-style theorems. In particular:

– Section 3.1 formally defines prior-independence as a special case of pa-
rameterized prior-independence. The notion of parameterized prior-
independence unifies average-case and worst-case analyses under the same
umbrella, and this concept was not explicit in previous papers.

– Section 3.3 studies the digital goods case with two bidders, which arguably
gives the most insight into prior-independence. A new small result is that
the Vickrey auction achieves the best prior-independent approximation
ratio among all mechanisms.

– Section 5.3 gives a general reduction of prior-independence to Bulow-
Klemperer-style statements in the flavor of Bulow and Klemperer [15].
To prove the reduction, we prove that optimal revenue is fractionally sub-
additive, slightly strengthening the subadditivity lemma proved in [66].
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• Chapter 4 is based on the technical contents of [25]. The reduction in Section
4.4 is based on duplicating and pairing agents and was not presented in previous
papers.

• Chapter 5 is based on [66], with improved organization and technical presenta-
tion.

• Chapter 6 is based on [76], with a new section (Section 6.5) on how to achieve
prior-independence with SPMs.

• Chapters 7 and 8 are based on [46], where we define the basic settings more
explicitly for ease of understanding.

1.10 Related Work

We mention some works that are generally related to the concept of prior-
independence. More works that are technically related can be found in the various
chapters.

Economics Literature Most of the vast literature on revenue-maximizing auc-
tions studies designs tailored to a known distribution over bidders’ private information
(see, e.g., [55]). In particular, Myerson characterized the optimal auction mechanism
for a given distribution [61]. Here, we mention only the works related to approxima-
tion guarantees for prior-independent mechanisms. [62] considers single-item auctions
with i.i.d. bidders, and quantifies the fraction of the optimal welfare extracted as rev-
enue by the (prior-independent) Vickrey auction, as a function of the number of bid-
ders. [69] and [11] prove asymptotic optimality results for certain prior-independent
mechanisms when bidders are symmetric, goods are identical, and the number of
bidders is large.

Prior-Freeness In prior-free auction design, distributions are not even used to
evaluate the performance of an auction — the goal is to design an auction with
good revenue for every valuation profile, rather than in expectation. [36] proposes
a revenue benchmark approach, which has been applied successfully to a number of
auction settings.
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Approximation in this revenue benchmark framework is stronger than the prior-
independent approximation goal pursued in most part of this thesis, at a bounded
loss in approximation factor; this fact was made explicit in [44] and pursued further
by [22, 45] for simple auction settings, where the goods are in unlimited supply and/or
the bidders are symmetric; see [42] for a survey. Our work in [46] generalizes the
revenue benchmark approach to much more general asymmetric settings.

For more discussion on the motivation of approximation in mechanism design, see
the survey of Hartline [41].

Risk Aversion and Utility Objective In this thesis we assume that the auc-
tioneer or seller’s goal is to maximize expected revenue, which implicitly assumes
that the seller is risk-neutral. Sundararajan and Yan [70] studies a setting where the
seller is risk-averse, and is endowed with a monotone concave utility function on top
of revenue. The objective is then to maximize expected utility. For such a setting,
several mechanisms are proved to give utility-oblivious approximation guarantees,
in the sense that the mechanism achieves a constant fraction of the optimal utility
of a mechanism, even without knowledge about the utility function. This type of
guarantee is very similar to prior-independence in spirit.

Prior-Independence in General In this thesis, we study prior-independence
as a framework for revenue-maximizing auctions. In fact, prior-independence can be
defined not only for auction problems, but also for algorithmic problems in general.
Notably, prior-independence is tightly connected to the random permutation model
that has been studied in several online algorithm problems. In particular, an i.i.d.
distribution can be seen as a convex combination of random permutation sample
spaces. It follows that the approximation guarantee of an algorithm for the random
permutation model automatically extends to the i.i.d. distribution model, even if the
distribution is unknown (cf. Chapter 7).

As an example, the classical online matching problem of Karp et al. [53] was
studied in [33, 58, 52] in a model where the online nodes arrive in random order. The
guarantees proved for this model directly imply guarantees for the setting proposed
in [31] where the online nodes are drawn according to an i.i.d. distribution.
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The random permutation model was also considered in online packing problems
[3, 32], as well as in the literature on secretary problems and their matroid variants
(see e.g., [8]).



Chapter 2

Preliminaries

In this chapter we review basic facts about Bayesian mechanism design. Readers who
are familiar with the area are encouraged to skim but not skip this chapter.

Section 2.1 defines the single-dimensional auction environments considered in this
thesis. In particular Section 2.1.1 defines matroid environments and list some of
its properties. Section 2.2 defines mechanisms and truthfulness, along with several
important examples of truthful mechanisms. Section 2.3 defines the various classes
of distributions we work with. Section 2.4 reviews Myerson’s optimal auction theory,
and Section 2.5 reviews a classical result of Bulow and Klemperer.

2.1 Single-Dimensional Environments

We mainly study auction environments that are single-dimensional, in the sense that
each bidder has a single private value for winning a service or good. Multi-dimensional
environments will be studied in Chapter 5.

In our setting, the seller or auctioneer sells services (or goods) to a set of n
bidders N = {1, . . . , n}. Each bidder i has a private value vi for winning the service,
and 0 otherwise, where each vi is drawn independently from a distribution Fi. For
simplicity we assume that every distribution is over the support [0,∞), and has a
positive smooth density function. It is only feasible for the seller to serve certain
subsets of the bidders simultaneously, and we let I ⊆ 2N with ∅ ∈ I represent all the

20
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feasible subsets. We assume that the environment is downward-closed, in the sense
that the subset of a feasible set is also feasible.

Auction environments can be classified by the set system (N, I). We will be
studying the following auction environments:

Single-item Auctions We can serve at most one bidder. Here I contains all sets
of size at most 1.

Digital Goods Auctions Every set of bidders is feasible (as digital goods such as
music downloads can be reproduced at no cost). Here I contains all bidder
subsets.

k-Unit Auctions/Multi-Unit Auctions A bidder set is feasible if its size is at
most k. Single-item auctions correspond to 1-unit auctions, and digital goods
auctions correspond to n-unit auctions. Here I contains all sets of size at most
k.

Matroid Environments (N, I) forms a matroid (to be defined in Section 2.1.1).
This contains multi-unit auctions as a special case. Examples of matroid en-
vironments that are not multi-unit auctions include partition matroid environ-
ments, and certain constrained matching markets (see Section 2.1.1).

p-Independent Environments (N, I) forms a p-independent set system (to be de-
fined in Section 6.4.3). This contains matroid environments as special cases.

Downward-closed Environments (N, I) forms a downward-closed set system.
This contains all above environments as special cases. A typical example is
combinatorial auctions with single-minded bidders, where each bidder is inter-
ested in a specific bundle of items, and feasible sets correspond to sets of bidders
desiring mutually disjoint bundles.

An alternative way to capture the allocation constraint is via the (weighted) rank
function, which tells us how many bidders in a given bidder set can be served simul-
taneously.
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Weighted Rank Functions For a set system (N, I) with nonnegative weights
(wi)i∈N on the elements, we define the weighted rank function w∗(S) for S ⊆ N as the
maximum of

∑
i∈T wi over all T ⊆ S with T ∈ I. The (unweighted) rank functions

are defined with weights set to one.

2.1.1 Matroids

Matroid environments have a rich history in mechanism design, see e.g., [71], [12],
and [45]. It is an abstraction of many allocation constraints modeled by set systems,
and in some sense captures the structurally “nice” allocation constraints. See [64] for
an in-depth treatment of matroid theory.

Matroid A set system (N, I) (with ∅ ∈ I) is a matroid if (1) S ⊆ T ∈ I implies
that S ∈ I, and (2) if S, T ∈ I and |S| > |T |, then for some e ∈ S\T , T ∪ {e} ∈ I.
Here the second property is called exchange property.

Matroids are also closely related to the greedy algorithm.
Greedy Given a set system (N, I) with nonnegative weights (wi)i∈N , and a subset

S of N , the greedy algorithm over S starts with an empty solution set A, and for
each bidder i in S in decreasing order of wi, adds i into the solution set A whenever
A∪{i} is in I. Finally it outputs A. We let greedy(S) denote the final output of the
greedy algorithm over S.

Note that the greedy algorithm is ordinal in the sense that only the relative order
(but not the magnitude) of weights matters in determining the outcome.

In a matroid set system, the following are true:

1. For every set S, the total weight of the set greedy(S) equals to the weighted
rank of set S.

2. The weighted rank function is monotone (∀S, T : w(S) ≤ w(T ) whenever S ⊆
T ) and submodular (∀S, T : w(S) + w(T ) ≥ w(S ∪ T ) + w(S ∩ T )).

We give three important examples of matroids below.
k-Uniform Matroid In a k-uniform matroid, a set is feasible if and only if its

size is at most k. This allows us to model the constraint of a k-unit auction.



CHAPTER 2. PRELIMINARIES 23

Partition Matroid In a partition matroid, the ground set is partitioned into `
parts, where each part is associated with a limit on how many elements can be taken
from it. A set is feasible if the number of elements it contains from each part is within
the limit for the part. This allows us to model an auction setting where the bidder
set is divided into sub-markets, and we have supply limit for each sub-market.

Transversal Matroid A transversal matroid over element set N is associated
with a bipartite graph with node set N on one side, and M on the other. A subset S
of N is feasible if there is a matching between N and M where every element of S is
matched. This matroid allows us to model a constrained matching scenario.

2.2 Mechanisms

A (deterministic) mechanismM comprises an allocation rule x that maps every bid
vector b to a characteristic vector of a feasible set (in {0, 1}n), and a payment rule p

that maps every bid vector b to a non-negative payment vector in [0,∞)n. We assume
that every bidder i aims to maximize its quasi-linear utility ui(b) = vi ·xi(b)− pi(b),
where vi is her private valuation for winning.

Measure-Theoretic Assumption As we will be studying expected revenue of
a mechanism over a distribution, we shall also assume that xi, pi’s are Lebesgue-
measurable, so that expected revenue can be well-defined. We will skip measure-
theoretic discussions regarding whether each expectation in this thesis is well-defined,
to make our presentation clean.

Definition 2.1. We say a mechanismM is truthful or ex post incentive compatible
if for every bidder i and fixed bids b−i of the other bidders, bidder i maximizes its
utility by setting its bid bi to its private valuation vi. Formally, for all i,b−i, b, we
have vi · xi(b−i, vi) − pi(b−i, vi) ≥ vi · xi(b−i, b) − pi(b−i, b). By default, we also
require individual rationality, which means that for all i,b−i, we have vi ·xi(b−i, vi)−
pi(b−i, vi) ≥ 0.

Since we only consider truthful mechanisms in this thesis, in the rest of the thesis
we use the terms of values and bids interchangeably. We will also use mechanisms to
refer to truthful mechanisms for brevity.
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A well-known characterization of truthful mechanisms in single-dimensional envi-
ronments [61, 6] states that a mechanism (x,p) is truthful if and only if the allocation
rule is monotone — that is, xi(b′i,b−i) ≥ xi(b) for every i, b, and b′i ≥ bi — and the
payment rule is given by a certain formula involving the allocation rule. We often
specify a truthful mechanism by its monotone allocation rule, with the understanding
that it is supplemented with the unique payment rule that yields a truthful mecha-
nism. For deterministic mechanisms like those studied in this thesis, the payment of
a winning bidder is simply the smallest (or the infimum of) bid she needs to bid to
remain a winner.

Yet another equivalent way of defining the truthfulness constraints is that for each
bidder i, if we fix the valuations v−i of the other bidders, bidder i faces a take-it-or-
leave-it offer at a price pi(v−i) that is independent of bidder i’s own value vi.

Occasionally, we consider randomized mechanisms, where a randomized mecha-
nism is simply a distribution over deterministic truthful mechanisms.

2.2.1 Objectives

There are two commonly studied objectives in mechanism design, which are welfare
and revenue. Here welfare (also called efficiency) refers to the total value of the win-
ners, or formally

∑
i vi ·xi(v), and revenue refers to the total payment the auctioneer

receives from the bidders, or formally
∑

i pi(v) · xi(v). By individual rationality, the
revenue of a mechanism outcome is bounded above by its welfare.

The main objective of this thesis is revenue, although most of our theory does ex-
tend to objectives that are convex combinations of welfare and revenue. The revenue
objective is more interesting and challenging than the welfare objective. In partic-
ular, the well-known VCG mechanism achieves the best possible welfare for every
valuation profile v, while on the other hand, there is no mechanism such that for
every valuation profile, this mechanism is optimal in revenue compared to all other
mechanisms.
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2.2.2 Example: VCG and Variants

For both single-dimensional and multi-dimensional environments, the celebrated VCG
mechanism [73, 21, 38] maximizes welfare, and is truthful. In particular, it chooses
the feasible set S ∈ I that maximizes the welfare

∑
i∈S vi, and charges each bidder

i its externality, which is the maximum welfare of all other bidders when i is not in
the system, minus the welfare of all other bidders in the chosen allocation. Ties are
broken in an arbitrary way that does not depend on the bids.

A useful variant of the VCG mechanism is based on artificially setting a supply
limit. For example for the k-unit auction setting, the VCG≤

n
2 mechanism allocates to

maximize welfare, subject to the constraint that at most half of the bidders can win.
More elaborate forms of supply-limiting exist, even for multi-dimensional environ-
ments. In general such mechanisms are special cases of maximal-in-range mechanisms
(see [63]), which are well-known to be truthful.

For single-dimensional environments, two variants of the VCG mechanism are also
important. Let ri be a reserve price for bidder i. The VCG mechanism with eager
reserves r (VCG-E) works as follows, given bids v: (1) delete all bidders i with vi < ri;
(2) run the VCG mechanism on the remaining bidders to determine the winners; (3)
charge each winning bidder i the larger of ri and its VCG payment in step (2). In the
VCG mechanism with lazy reserves r (VCG-L), steps (1) and (2) are reversed. Both
of these mechanisms are feasible and truthful in every downward-closed environment.
In simple environments, these two variants are equivalent (Corollary 4.4), and will be
both called VCG with reserves. But they are different in general.

2.2.3 Example: Virtual Surplus Maximizer

For single-dimensional environments, a virtual surplus maximizer is specified by a
non-decreasing virtual value function φ : [0,∞) → (−∞,∞). The virtual surplus
maximizer mechanism allocates to maximize the total virtual value of the winners, or
formally,

∑
i xi(v) · φ(vi), and charges the appropriate payments. Ties are broken in

an arbitrary way that does not depend on the bids. It is straightforward to verify that



CHAPTER 2. PRELIMINARIES 26

such a mechanism is monotone and hence truthful. In general, we can also specify a
virtual value function for each bidder respectively.

2.2.4 Example: Sequential Posted-Price Mechanisms

Given an ordering of bidders and a price pi for each bidder i, a Sequential Posted-price
Mechanism (SPM) first initializes the allocated set A to be ∅, and for all bidders i in
the given order, do the following: if serving i is feasible, i.e., A+ i ∈ I, offer to serve
bidder i at the pre-determined price pi, and add i to A if bidder i accepts.

The ordering of bidders can be crucial in SPMs. The greedy ordering will be of
particular interest to us, where we make sure that bidders according to our ordering
have descending posted prices.

2.3 Distributions

In most part of this thesis, we will make the assumption that the each bidder’s value is
drawn independently from a distribution (although this distribution may or may not
be given to us). For technical convenience, we make the following basic assumptions
on all distributions we work with:

• It has a support of the form of either [L,∞) or [L,H] for some L,H ≥ 0.

• It has a positive and smooth density function with one allowed exception. The
exception is that if the support is of the form of [L,H], then a constant amount
of probability mass can concentrate on the point H, and the density function
can be not smooth at this point.

• It has a finite expectation.

The above-mentioned exception allows us to define distributions such as the equal
revenue distributions (Example 2.9) directly.

For technical convenience, we often assume that L = 0, as a valid distribution
with L > 0 can be adapted slightly to be a valid distribution over a support with
L = 0, with a negligible effect on the analysis.
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(a) Uniform Distribution over [0,1] (b) Exponential Distribution with Rate 1

Figure 2.3.1: Revenue Curves of Uniform and Exponential Distributions

Distribution information is commonly captured by either the Cumulative Distri-
bution Function (CDF in short) F , or the Probability Density Function (PDF in
short) f . However, for the purpose of revenue maximization, a third way of capturing
distribution information turns out to be crucial, which is based on the notion of the
revenue curve function.

Definition 2.2 (Revenue Curve Function). Given a distribution F , the revenue curve
function is defined as RF (q) = q · F−1(1 − q) for all probability q ∈ (0, 1], and
RF (0) = 0.

In the case that F is defined over a support [L,H] where a constant amount qH
of probability mass is concentrated at H, we let F−1(1− q) = H for q < qH .

To associate the revenue curve function with a semantic meaning, consider a single-
bidder single-item auction with underlying distribution F . If we offer a price such
that the probability of sale is q, then the price should be F−1(1− q), and then RF (q)

is the expected revenue we achieve. We can define a distribution F by specifying an
appropriate RF (·) function.

Figures 2.3.1a and 2.3.1b depict the revenue curve function of the uniform distri-
bution over [0,1], and the exponential distribution with rate 1, respectively. In both
cases, the revenue curves are concave.
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2.3.1 Regular Distributions

In most part of the thesis, we assume that the distributions satisfy a standard regu-
larity condition, which we define as follows (cf. [61], [15]).

Definition 2.3 (Regular Distributions). A distribution F is regular if the revenue
function RF (·) w.r.t. F is concave.

An equivalent way of defining regular distributions is based on the notion of virtual
values.

Definition 2.4 (Virtual Value Function). Given a distribution F , its virtual value
function is φF (v) = v− 1

hF (v)
, where hF (v) = f(v)

1−F (v)
is the hazard rate function w.r.t.

F .

Lemma 2.5. Given a distribution F and value p with q = 1− F (p). Then dRF (q)
dq

=

φF (p).

Proof. The lemma follows from the following equalities:

dRF (q)

dq
=

d(qF−1(1− q))
dq

= F−1(1− q) + q
dF−1(1− q)

dq

= p− q · 1

f(F−1(1− q))

= p− 1− F (p)

f(p)

= φF (p).

Corollary 2.6. A distribution is regular if and only if its virtual value function is
non-decreasing.

Three extreme examples of regular distributions include the class of left-triangle
distributions, the class of right-triangle distributions, and the class of equal-revenue
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distributions. We give the definitions below, and depict the corresponding revenue
curves in Figure 2.3.2.

Example 2.7 (Left-Triangle Distribution). A left-triangle distribution F with pa-
rameters H is given by its revenue curve function R(q) = qH for q ∈ [0, 1

H+1
], and

R(q) = 1− q for q ∈ [ 1
H+1

, 1]. More explicitly, its CDF is given by F (v) = 1− 1
1+z

for
[0, H) and F (H) = 1.

Example 2.8 (Right-Triangle Distribution). A right-triangle distribution F with
parameter H is essentially the single-point distribution that Prv∼F [v = H] = 1. Its
revenue curve function is R(q) = qH for q ∈ [0, 1].

Example 2.9 (Equal-Revenue Distribution). An equal-revenue distribution capped
at H has CDF F defined as F (z) = 1− 1

z
for x ∈ [1, H) and F (H) = 1.1 It is called

equal-revenue distribution because every price from [0, H] leads to the same expected
revenue of 1.

As many important distributions are regular, regularity has been considered as a
standard assumption. We do note that there exist distributions that are not regular,
e.g., bimodal distributions. We refer the readers to [28] for a list of regular distribu-
tions as well as a list of irregular distributions. Yet another alternative definition of
regularity is also given in [28].

2.3.2 Monotone Hazard Rate Distributions

An important (strict) subclass of regular distributions is the class of monotone hazard
rate distributions.

Definition 2.10 (Monotone Hazard Rate Distributions). A distribution F satisfies
the monotone hazard rate condition (or simply F is m.h.r.), if hF (v) = f(v)

1−F (v)
is

nondecreasing in v.
Some examples of m.h.r. distributions are uniform, exponential, and normal distri-

butions. The log-normal distributions are regular but not m.h.r. The three extreme
regular distributions in Examples 2.7, 2.8, and 2.9 are also not m.h.r.

1Here the capping at H is essential. Without capping, the distribution would have an infinite
expectation.



CHAPTER 2. PRELIMINARIES 30

(a) Left-Triangle Distribution with Parame-
ter H

(b) Right-Triangle Distribution with Param-
eter H

(c) Equal-Revenue Distribution Capped at
H

Figure 2.3.2: Revenue Curves of Several Extreme Regular Distributions
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2.4 Myerson’s Optimal Auction Theory

If bidders’ values are drawn from a joint distribution F , then there exists an optimal
mechanism OPTF that achieves as much expected revenue (over F ) as any other mech-
anism. Myerson [61] characterizes the optimal mechanisms for single-dimensional en-
vironments when bidders’ values are drawn from independent distributions. A key
element in the characterization is the notion of virtual values (Definition 2.4).

To understand virtual values, consider the simple setting of a single bidder and a
single item. The bidder’s value for the item is drawn from a distribution F . Suppose
that given a target probability of sale q, we offer the corresponding price p = F−1(1−q)
to the bidder. The expected revenue as a function of q can be written as RF (q) =

q · F−1(1 − q). On the other hand, by Lemma 2.5, the virtual value of v is equal to
dRF (q)
dq

where q = 1− F (v), which we collect whenever v ≥ p. Therefore the expected
virtual value we achieve is

∫∞
p

1v≥pφ(v)dv =
∫ q

0
dRF (q)
dq

dq, which equals to RF (q).
Essentially, for the single-bidder case, no matter what price the bidder faces,

expected revenue equals to expected virtual value.
Now suppose there are multiple bidders. The same discussion applies, because

from a fixed bidder’s point of view, the effect of having other bidders simply means
that she now faces a threshold price that she has to outbid to win, where this threshold
price is induced by other bidders. No matter what this threshold price is, the expected
revenue we get from this fixed bidder equals to expected virtual value by the same
argument as in the single-bidder case. Therefore we have the following lemma:

Lemma 2.11 (Myerson’s Lemma). For every truthful mechanism (x,p), the expected
payment of a bidder i with valuation distribution Fi satisfies

Ev[pi(v)] = Ev[ϕFi
(vi) · xi(v)].

Moreover, this identity holds even after conditioning on the bids v−i of the bidders
other than i.

In other words, expected revenue maximization can be reduced to the maximiza-
tion of virtual surplus (sum of total virtual values). Consider the mechanism that
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chooses a feasible set S that maximizes the virtual surplus
∑

i∈S ϕFi
(vi). Because

distributions are regular, virtual value functions are monotone, and it follows that
this mechanism is monotone, and hence truthful.

Theorem 2.12 (Myerson’s Optimal Mechanism). When distributions are indepen-
dent and regular, Myerson’s mechanism that allocates to the feasible set that maxi-
mizes total virtual surplus also maximizes expected revenue.

The role of regularity is to ensure that this allocation rule is indeed monotone;
otherwise, additional ideas are needed [61].

Remark 2.13. We have constrained ourselves to truthfulness, or ex post incentive
compatibility. Myerson also studied the weaker solution concepts of Bayesian Incen-
tive Compatibility (Bayes-IC) and Bayesian Nash Equilibrium (Bayes-NE). In such
a Bayesian setting, each bidder knows her own value, and the distributions (but not
values) of the other bidders. In a Bayes-IC mechanism, every bidder maximizes her
expected utility (in expectation over distributions of the other bidders) by bidding
truthfully, given that other bidders also bid truthfully. Myerson’s optimal mechanism
in fact maximizes expected revenue among all Bayes-IC mechanisms. An application
of the revelation principle even allows this guarantee to hold for the even larger class
of Bayes-NE mechanisms. In other words, relaxing to these weaker solution concepts
do not give us additional power in revenue maximization, and it is without loss of
generality that we focus on truthfulness, or ex post incentive compatibility in this
thesis.

2.5 Bulow-Klemperer Theorem and Its Generaliza-

tions

The classical Bulow-Klemperer theorem says that instead of running Myerson’s opti-
mal mechanism for selling a single item to n bidders with values drawn i.i.d. from a
regular distribution, the auctioneer is better off running the Vickrey auction with one
additional bidder. The following is a straightforward generalization of the theorem
to k-unit auctions.
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Theorem 2.14 (Generalized Bulow-Klemperer Theorem). [15, 26] For every k-unit
environment with i.i.d. regular bidders, the expected revenue of VCG with k additional
bidders is at least as high as the optimal expected revenue.

The following proof is based on generalizing the proof of [54] in a straightforward
way.

Proof. Starting with the optimal mechanism for k-unit auctions over n bidders, we
construct an intermediate mechanism for k-unit auctions over n + k bidders, which
first runs the optimal mechanism over the first n out of n + k bidders w.r.t. a fixed
bidder ordering, and then give the left-over unallocated items to the last k bidders for
free. It is easy to verify that this is a truthful mechanism. The theorem now follows
from the following two simple observations.

(1) The intermediate mechanism has the same revenue as the optimal mechanism.
This is because the last k bidders never pay any amount.

(2) Among all mechanisms that always allocates all k items (which includes the
intermediate mechanism in particular), the VCG mechanism maximizes expected rev-
enue. To see this, among all mechanisms that allocate all k items, the one that max-
imizes expected revenue allocates to the k bidders with the highest virtual values by
Myerson’s Lemma. By the regularity assumption, the virtual values are monotone
in values. It follows that the VCG mechanism, which maximizes total value, also
maximizes total virtual value, and hence expected revenue as well.

2.6 Properties of the Optimal Revenue Function

Given an auction environment (single-dimensional or multi-dimensional), we abuse
notation to let OPT(S) denote both the optimal mechanism and its expected rev-
enue for the sub-environment induced by bidder set S. In this section we study the
properties satisfied by this set function.

We mention a few standard definitions regarding set functions. For a finite ground
set N , a nonnegative set function f(S) : 2N → [0,∞) is:

• monotone, if f(S) ≤ f(T ) whenever S ⊆ T
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• submodular if f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ) for all S, T

• fractionally subadditive if for every bidder set S and a fractional cover of S,
i.e., Tj for all j and coefficients 0 ≤ αj ≤ 1 for all j such that for every i ∈ S,∑

j|i∈Tj αj ≥ 1, we have f(S) ≤
∑

i αjf(Tj).

• subadditive if f(S) + f(T ) ≥ f(S ∪ T ) for all S, T .

Assuming that f is monotone, submodularity implies fractional subadditivity, which
then implies subadditivity. Readers are referred to Feige [30] for more discussions on
these classes of set functions.

All single- or multi- dimensional environments studied in this thesis satisfy the
following condition: every feasible allocation for a smaller bidder set S is also a
feasible allocation for a bigger bidder set T that contains S. This condition allows
us to argue that OPT(·) is monotone. This is because an optimal mechanism for S
is trivially a mechanism for T (where bidders in T\S never wins anything), and the
optimal mechanism for T can only be better.

Dughmi et al. [26] prove that for single-dimensional matroid environments, OPT(·)
is monotone and submodular. In Chapter 5 we prove for both single-dimensional and
multi-dimensional environments, that OPT(·) is monotone and fractionally subaddi-
tive. The statement of the lemma is as follows.

Lemma 2.15 (Fractional Subadditivity of Optimal Expected Revenue). For every
(single-dimensional or multi-dimensional) auction environment, OPT(·) is fraction-
ally subadditive.

Proof. By revenue monotonicity, it is sufficient to prove the claim for the case that
Tj ⊆ S for all j.

For every j, the optimal mechanism OPT(S) induces a randomized mechanism
Mj for set Tj. In particular, this mechanism randomly draws values for bidders
from S\Tj according to their distributions, and simulates OPT(S) on Tj, cancelling
outcome for fake bidders of S\Tj. The expected revenue ofMj (also denoted byMj)
is bidder-wise the same as the expected revenue of OPT(S) for all bidders in Tj. By
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the fractional covering assumption,
∑

j αjMj ≥ OPT(S). Our lemma follows from
the fact that OPT(Tj) ≥Mj for every j.

This lemma allows us to easily bound the loss in removing bidders from the system.
For example, if we randomly remove one of the n bidders, then the optimal revenue of
the remaining environment is at least a (1− 1

n
)-fraction of the original environment.



Part II

Prior-Independent Mechanisms
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Chapter 3

Prior-Independence: Definition,

Example, and Reduction

In this chapter, we formally define the prior-independent analysis framework, study
how to achieve prior-independent approximation in a simple illuminating setting, and
prove a general reduction of prior-independent approximation to Bulow-Klemperer-
style statements.

3.1 Prior-Independent Approximation

We repeat the definition of parameterized prior-independence from Chapter 1.

Definition 3.1 (Parameterized Prior-Independence). Given an auction environment
with at least two bidders, we say that a mechanism M gives a prior-independent
ρ-approximation w.r.t. distribution class C if:

Ev∼F [revenue ofM(v)] ≥ ρ · Ev∼F [revenue of OPTF (v)]

for all F ∈ C.
Here the mechanismM can dependent on C but not the specific F .

Informally, we require that the expected revenue of our mechanism over every
distribution from the clas is approximately as good as the optimal expected revenue

37
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of a mechanism tailored for the distribution. Moreover, our mechanism should have
no specific knowledge about the distribution, except it comes from certain distribution
class.

Remark 3.2. It should be obvious that there need to be at least two bidders for prior-
independence to make sense. This is because for single-bidder case, every truthful
mechanism is essentially a fixed price. It is impossible to set a good price without
any idea about the scale of the distribution. See also [36].

3.2 Distribution Classes

What we left open in the definition is the choice of distribution class. We will explore
several different options to the choice of C, which are listed below in order of increasing
generality.

monotone hazard rate distributions

⊆ regular distributions

⊆ tail-regular distributions

⊆ arbitrary distributions

We assume that distributions of different agents are independent.
Our main focus will be on prior-independence w.r.t. independent regular distri-

butions. Monotone hazard rate distributions will be studied in Chapter 4, and tail-
regular distributions will be studied in Chapters 7 and 8. Example 3.5 shows that if
we allow arbitrary distributions, prior-independence is not achievable.

3.3 Case Study: Digital Goods with Two Bidders

A complete understanding of a simple special case will be illuminating, revealing the
core insight that will lead us to general results. In this section, we convey a thorough
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study of digital goods auctions with two i.i.d. regular bidders, which will give us the
most insight on prior-independence. In particular, we will learn that:

1. A single sample can be sufficient information about the distribution to achieve
approximately optimal revenue.

2. Supply limiting can be a good strategy for revenue maximization.

3. Proving a prior-independent approximation is connected to proving Bulow-
Klemperer-style statements in the flavor of Bulow and Klemperer [15].

Many results in Chapters 4 and 5 can be seen as generalizations of results in this
section in various ways.

3.3.1 Characterizing All Truthful Mechanisms

Although in general the space of truthful mechanisms can be too rich to understand,
in the case of digital goods auctions with two bidders, we can give a very explicit
description of the space of truthful mechanisms [36].

Let the two bidders be named Alice and Bob. Their values vA and vB re-
spectively are drawn i.i.d. from a regular distribution F . Every (deterministic)
truthful mechanism can be essentially characterized by two “threshold” functions
tA, tB : [0,∞)→ [0,∞), where Alice wins if and only if vA ≥ tA(vB) (or vA > tA(vB))
and Bob wins if and only if vB ≥ tB(vA) (or vB > tB(vA)). Recall that we assume that
these two threshold functions are Lebesgue-measurable, so that expected revenue of
the mechanism is well-defined.

3.3.2 Revenue of the Vickrey Auction

Without knowledge about the prior distribution, perhaps the most natural thing to
do is to set tA(vB) = vB for all vB, and tB(vA) = vA for all vA. In fact, this is what
happens in the Vickrey auction (up to what happens in the case of a tie), where Alice
wins if and only if she outbids Bob, and vice versa.

It turns out that Vickrey auction gives a prior-independent 1
2
-approximation. The

following proof is from [25].
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Figure 3.3.1: Random vs. Optimal Price: Revenue Comparison

Theorem 3.3. For digital goods auctions with two i.i.d. regular bidders, the Vickrey
auction gives a prior-independent 1

2
-approximation to optimal expected revenue.

Proof. First assume that the underlying distribution is defined over [0,∞).
In the Vickrey auction for two bidders, from each bidder’s point of view, she/he

faces a random price drawn from distribution F . On the other hand, in the optimal
mechanism for F , each bidder is offered the optimal price p∗. It suffices to quantify
how much we lose by using a random price instead of the optimal price.

We claim that the expected revenue from using a random price is at least half of
that from using the optimal price, for regular distributions. A random price p ∼ F

has a selling probability q = 1 − F (p) that is distributed uniformly over [0, 1]. It
follows that the expected revenue from offering a random price can be written as
Eq∼U [0,1][R(q)]. Pictorially, as depicted in Figure 3.3.1, this equals to the area under
the curve defined by R, and above the q-axis. On the other hand, the expected
revenue from offering the optimal price equals to R(q∗), which equals to the height of
the curve. By concavity, the area under the curve is at least the area of the triangle
in Figure 3.3.1, which equals to half of the height.

For the case that the support of F starts at L > 0, it is easy to slightly modify the
distribution so that it becomes a regular distribution defined with support starting
from L = 0, with a negligible effect on the analysis.
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Finally we deal with the slightly tricky case where the support of F is over [0, H],
where a constant amount of probability mass qH is concentrated on H. Assume
randomized tie-breaking of Vickrey. I.e., there is a sale with probability 1

2
if the

value exactly equals the price. Conditioning on that the random price turns out
to be H, which happens with probability qH , our expected revenue is 1

2
qHH. So

our total expected revenue from the case that the random price equals H is 1
2
q2
HH.

Recall we defined R(q) = qH for q < qH in this case, and hence the corresponding
“area”

∫ qH
0

R(q)dq also equals 1
2
q2
HH, and our geometric argument for previous case

extends.

3.3.3 Interpretation I: A Single Sample is Near-Optimal

In the proof of Theorem 3.3, we reduced the claim that Vickrey gives a prior-
independent 1

2
-approximation to the claim that a random price is half-optimal. Es-

sentially, we use a single sample from the distribution, and this gives sufficient infor-
mation to achieve approximately optimal revenue, at least in digital goods auctions
with two bidders.

In fact, this holds much more generally. In Chapter 4, we prove that for a variety of
settings, a random reserve price (taken from a participating agent’s bid) appropriately
combined with VCG mechanism can give good prior-independent guarantees.

3.3.4 Interpretation II: Supply-Limiting is Good for Revenue

In a digital goods auction with two bidders, we have two items available for two
bidders. On the other hand, the Vickrey auction commits to selling exactly one of
the two items, effectively limiting the supply from two to one. This makes the two
bidders compete against each other, whereas competition drives up revenue.

In fact, in Chapter 5, we prove that supply-limiting is a good revenue-maximizing
strategy in general, which gives a prior-independent guarantees for a variety of set-
tings, including a multi-dimensional matching environment.
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3.3.5 Interpretation III: Market Expansion is Good for Rev-

enue

Now suppose we only had one item and one regular bidder. The optimal revenue in
this case is exactly half of that of the two-bidder case we just studied. Theorem 3.3
can then be reinterpreted as a Bulow-Klemperer-style statement.

• Compared to running the optimal auction for one bidder, with an extra bidder
(with the same value distribution), the Vickrey auction gives at least as much
expected revenue.

In fact, this is the same as the Bulow-Klemperer theorem (cf. Theorem 2.14) for the
one bidder case.

Essentially, a Bulow-Klemperer-style statement is very close to a prior-
independent guarantee, as the Vickrey auction does not reference distribution
information. The only difference is that the Vickrey auction runs over an expanded
set of bidders.

In fact, prior-independent approximation and Bulow-Klemperer-style statements
are tightly related. In Section 5.3, we show that prior-independent approximations
can be reduced to Bulow-Klemperer-style statements for a variety of environments,
and toward a prior-independent approximation, what we commonly do is to first prove
a corresponding version of a Bulow-Klemperer-style statement.

3.3.6 Vickrey is the Best Prior-Independent Mechanism

In this subsection, for digital auctions with two bidders, we study whether there
exists a mechanism that achieves a better prior-independent approximation ratio than
Vickrey auction.

Proposition 3.4. For digital goods auctions with two i.i.d. regular bidders, every
truthful mechanism achieves a prior-independent approximation ratio of at most 1

2
.

Proof. Suppose for contradiction that some mechanism with threshold functions tA(·)
and tB(·) achieves a prior-independent approximation ratio of strictly larger than 1

2
.
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We first argue that tA(v) ≤ v and tB(v) ≤ v. Suppose for contradiction that for
some v, tA(v) > v. Let the distribution be the single-point distribution over v (i.e.,
the right-triangle distribution of Example 2.8 with parameter v). Then we get zero
revenue from Alice, and we can get at best a 1

2
-approximation to optimal revenue,

contradiction.
Next consider the left-triangle distribution (see Example 2.7) with parameters H

for sufficiently large H. For this distribution, a higher price within the range of [0, H)

gives higher expected revenue. Therefore among all mechanisms with tA(v) ≤ v and
tB(v) ≤ v for v ≤ H, the revenue-optimal mechanism satisfies tA(v) = tB(v) = v

for all v < H. For such a mechanism, by an area vs. height argument as in proof
of Theorem 3.3, the approximation ratio is 1

2
, but not strictly larger than 1

2
. What

happens when v = H will not matter, as a random value is in this range with negligible
probability for sufficiently large H.

The following example shows that if C contains arbitrary independent distribu-
tions, then no constant factor approximation is possible, even if randomized mecha-
nisms are allowed.

Example 3.5. Consider a digital goods auction with two i.i.d. bidders. Let mech-
anism M have tA(0) = hA, and tB(0) = hB. Let H be a much larger number than
hA and hB, and consider a distribution where a random draw takes value H with
probability 1

H
, and 0 otherwise. The optimal mechanism is to offer a price H to each

bidder, achieving an expected revenue of 1 from each bidder. On the other hand, to
calculate the expected revenue ofM from Alice, with probability 1− 1

H
, Bob’s value

is 0, and M collects expected revenue of 1
H
hA from Alice, and with probability 1

H
,

Bob’s value is H, and no matter what price Alice is offered, the expected revenue
from Alice in this case is upper-bounded by 1. In total the expected revenue from
Alice (and Bob, symmetrically) is negligible compared to 1.

If the mechanism is a randomized one, the threshold functions tA and tB map real
values to random real values. However, the argument extends directly if we replace
hA and hB by the expected values of tA(0) and tB(0), respectively.



Chapter 4

VCG with Sampled Reserves

In this chapter, we propose mechanisms based on the VCG mechanism with ran-
dom reserve prices, and prove that they give prior-independent approximation. This
chapter is mainly based on [25].

4.1 Introduction

4.1.1 Settings

We consider attribute-based single-dimensional downward-closed environments. In
such an environment, each bidder has an observable attribute, and we assume that
the valuations of bidders with a common attribute are drawn i.i.d. from a distribution
that is unknown to the seller. Bidders with different attributes can have valuations
drawn (independently) from completely different distributions. For example, based on
(publicly observable) eBay bidding history, one might classify bidders into “bargain-
hunters”, “typical”, and “aggressive”, with the expectation that bidders in the same
class are likely to have similar valuations, without necessarily knowing how their
valuations for a given item are distributed. We assume that the environment is non-
singular, meaning that there is no bidder with a unique attribute.1

1No prior-independent auction has a non-trivial approximation guarantee when there is a bidder
with a unique attribute. The reasoning is similar to that above for arbitrary valuation distributions;
see Section 3.5 and also [36].

44
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4.1.2 Approach

Toward prior-independence, we instantiate the three-step approach described in Sec-
tion 1.7.1.

1. Identify a class of mechanisms with certain parameters.

In particular we consider both VCG-E and VCG-L, i.e., welfare-maximizing
VCG with both eager and lazy reserves (see Section 2.2.2 for definitions), which
are parameterized by the reserves set for bidders.

2. Given distribution information, prove that for appropriate reserve prices VCG
with these reserves is approximately optimal.

3. Without distribution information, set these reserve prices, at a bounded loss in
revenue.

We mention how we achieve 2 and 3 for regular matroid environments in the following.
Similar results holds for m.h.r. downward-closed environments.

Toward 2, if bidders are i.i.d., VCG (either VCG-E or VCG-L) with monopoly
reserve happens to be the same as Myerson’s optimal mechanism. For the non-
i.i.d. case, Hartline and Roughgarden [45] prove that the VCG-E mechanism with
monopoly reserves are approximately-optimal. We prove that VCG-L with monopoly
reserves are also approximately-optimal.

To achieve 3, we study how to learn the monopoly reserve by taking samples from
the distributions. We propose the prior-independent Single Sample mechanism. This
mechanism is essentially the Vickrey-Clarke-Groves (VCG) mechanism, supplemented
with reserve prices chosen at random from participants’ bids. We show that the
expected revenue of the Single Sample mechanism is close to that of the VCG-L
mechanism with monopoly reserves. Since the Single Sample mechanism uses random
reserves and the VCG-L mechanism uses monopoly reserves, this is essentially a
generalization of the argument in Section 3.3.2.
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4.1.3 Main Results

We prove that under reasonably general assumptions, the Single Sample mechanism
gives prior-independent approximation guarantee. Conceptually, our analysis shows
that even a single sample from a distribution — some bidder’s valuation — is sufficient
information to obtain near-optimal expected revenue.

Our first main result considers matroid environments, where bidders satisfy a type
of “generalized substitutes” condition (Section 2.1). Examples of such environments
include k-unit auctions and certain matching markets. Here, we prove that the Single
Sample mechanism gives a prior-independent approximation of a factor of 1

4
· κ−1
κ

when
there are at least κ ≥ 2 bidders of every present attribute. When all bidders have
a common attribute and thus have i.i.d. valuations, we improve the approximation
factor to 1

2
for every κ ≥ 2.

Our second main result is that, for every downward-closed environment in which
every valuation distribution has a monotone hazard rate (as defined in Section 2.4),
the expected revenue of the Single Sample mechanism is at least a constant fraction of
the expected optimal welfare (and hence revenue) in that environment. The approx-
imation factor is 1

4
· κ−1

κ
, and our analysis of our mechanism is tight (for a worst-case

distribution) for each κ. This factor is 1
8
when κ = 2 and quickly approaches 1

4
as κ

grows. This gives, as an example special case, the first revenue guarantee for combi-
natorial auctions with single-minded bidders outside of the standard Bayesian setup
with known distributions [56, 45].

4.1.4 Other Results

An Alternative Approach In fact, there is an alternative approach to achieve
results in this chapter. This approach is based on a subtle form of reduction to
Bulow-Klemperer-style theorems for duplicate environments of Hartline and Rough-
garden [45]. The resulting mechanisms are complicated with worse approximation
ratio, but the approach is general: once we have a new version of Bulow-Klemperer-
style theorem for duplicate environments, this reduction gives us a prior-independent
mechanism. We present this reduction in Section 4.4.
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Many Samples As one can expect, taking more samples helps. We modify the
Single Sample mechanism to give better bounds as κ tends to infinity. A weak version
of this result, which does not give quantitative bounds on the number of bidders
required, can be derived from the Law of Large Numbers. To prove our distribution-
independent bound on the number of bidders required, we show that there exists a
set of “quantiles” that is simultaneously small enough that concentration bounds can
be usefully applied, and rich enough to guarantee a good approximation for every
regular valuation distribution.

4.2 Revenue Guarantees with a Single Sample

In this section, we design a mechanism that gives a prior-independent constant-factor
approximation to the optimal expected revenue in every non-singular regular matroid
environment, and in every non-singular m.h.r. downward-closed environment. Sec-
tion 4.2.1 defines our mechanism. Section 4.2.2 introduces some of our main analysis
techniques in the simpler setting of i.i.d. matroid environments — here, we also ob-
tain better approximation bounds. Section 4.2.3 gives an overview of our general
proof approach. Sections 4.2.4 and 4.2.5 prove our approximation guarantees for reg-
ular matroid and m.h.r. downward-closed environments, respectively. Section 4.2.6
shows that there is no common generalization of these two results, in that the Single
Sample mechanism does not have a constant-factor approximation guarantee in reg-
ular downward-closed environments. Section 4.2.7 discusses computationally efficient
variants of our mechanism.

4.2.1 The Single Sample Mechanism

Recall that each bidder has a publicly observable attribute that belongs to a known
set A. We assume that each bidder with attribute a has a private valuation for
winning that is an independent draw from a distribution Fa.
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We propose and analyze the Single Sample mechanism: we randomly pick one
bidder of each attribute to set a reserve price for the other bidders with that attribute,
and then run the VCG-L mechanism (Section 2.2.2) on the remaining bidders.

Definition 4.1 (Single Sample). Given a non-singular downward-closed environment,
the Single Sample mechanism is the following:

(1) For each represented attribute a, pick a reserve bidder ia with attribute a uni-
formly at random from all such bidders.

(2) Run the VCG mechanism on the sub-environment induced by the non-reserve
bidders to obtain a preliminary winning set P .

(3) For each bidder i ∈ P with attribute a, place i in the final winning set W if and
only if vi ≥ via . Charge every winner i ∈ W with attribute a the maximum of
its VCG payment computed in step (2) and the reserve price via .

The Single Sample mechanism is clearly prior-independent — that is, it is defined
independently of the Fa’s — and it is easy to verify that it is truthful. Section 4.3
shows how to use multiple samples to obtain better approximation factors there are
more than two bidders with each represented attribute.

4.2.2 Warm-Up: I.I.D. Matroid Environments

To introduce some of our primary analysis techniques in a relatively simple setting,
we first consider matroid environments (recall Section 2.1) in which all bidders have
the same attribute (i.e., have i.i.d. valuations).

Theorem 4.2 (I.I.D. Matroid Environments). For every i.i.d. regular matroid en-
vironment with at least n ≥ 2 bidders, the Single Sample mechanism gives a prior-
independent 1

2
· n−1

n
-approximation to optimal expected revenue.

The factor of (n − 1)/n can be removed with a minor tweak to the mechanism
(Remark 4.6).

What’s so special about i.i.d. regular matroid environments? Recall that a mono-
poly reserve price of a valuation distribution F is a price in argmaxp[p · (1 − F (p))].
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The following proposition follows immediately from Myerson’s Lemma, the fact that
the greedy algorithm maximizes welfare in matroid environments, and the fact that
the virtual valuation function is order-preserving when valuations are drawn i.i.d.
from a regular distribution (see Section 2.1.1).

Proposition 4.3. In every i.i.d. regular matroid environment, the VCG-E mechanism
with monopoly reserves is a revenue-maximizing mechanism.

The matroid assumption also allows us to pass from eager to lazy reserves.

Corollary 4.4. In every i.i.d. regular matroid environment, the VCG-L mechanism
with monopoly reserves is a revenue-maximizing mechanism.

Proof. The VCG mechanism can be implemented in a matroid environment via the
greedy algorithm: bidders are considered in non-increasing order of valuations, and a
bidder is added to the winner set if and only if doing so preserves feasibility, given the
previous selections. With a common reserve price r, it makes no difference whether
bidders with valuations below r are thrown out before or after running the greedy
algorithm. Thus in matroid environments, the VCG-L and VCG-E mechanisms with
an anonymous reserve price are equivalent.

Proving an approximate revenue-maximization guarantee for the Single Sample
mechanism thus boils down to understanding the two ways in which it differs from
the VCG-L mechanism with monopoly reserves — it throws away a random bidder,
and it uses a random reserve rather than a monopoly reserve. The damage from
the first difference is easy to control. Applying Lemma 2.15, in expectation over the
choice of the reserve bidder, the expected revenue of an optimal mechanism for the
environment induced by the non-reserve bidders is at least an n−1

n
fraction of the

expected revenue of an optimal mechanism for the original environment.
The crux of the proof of Theorem 4.2 is to show that a random reserve price

serves as a sufficiently good approximation of a monopoly reserve price. The next
key lemma formalizes this goal for the case of a single bidder, which is a generalization
of the argument of Theorem 3.3. For a distribution F , define the revenue function by
R̂(p) = p(1 − F (p)), the expected revenue earned by posting a price of p on a good
with a single bidder with valuation drawn from F .
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Lemma 4.5. Let F be a regular distribution with monopoly price r∗ and revenue
function R̂. Let v denote a random valuation from F . For every nonnegative number
t ≥ 0,

Ev[R̂(max{t, v})] ≥ 1

2
· R̂(max{t, r∗}). (4.2.1)

Proof. For simplicity, assume the distribution is over support of [0,∞). Other cases
can be handled in a way similar to the proof of Theorem 3.3. We can rewrite the
claim using the revenue curve function. Essentially, for every qt ∈ [0, 1], and concave
R with q∗ = argmaxqR(q), we want to prove that:

Eq∈U [0,1][R(min{qt, q})] ≥
1

2
·R(min{qt, q∗}).

First suppose that qt = 1, so that the claim is equivalent to the assertion that the
expectation of R(q) is at least half of R(q∗), which was proved in Section 3.3.2.

If qt ≥ q∗, then the right-hand side is unchanged. The left-hand side can only
be higher, as R(q) is decreasing in [q∗, q], and so q > qt implies that R(qt) ≥ R(q).
Finally, if qt < q∗, then the right-hand side is R(qt); and the left-hand side is a convex
combination of R(qt) (when q > qt) and the expected value of R(q) when q is drawn
uniformly from [0, qt], which by argument similar to 3.3, leveraging concavity, is at
least R(qt)/2.

We prove Theorem 4.2 by extending the approximation bound in Lemma 4.5 from
a single bidder to all bidders.

Proof. (of Theorem 4.2) Condition on the choice of the reserve bidder j. Fix a non-
reserve bidder i and condition on all valuations except those of i and j. Recall that j,
as a reserve bidder, does not participate in the VCG computation in step (2) of the
Single Sample mechanism. Thus, there is a “threshold” t(v−i) for bidder i such that i
wins if and only if its valuation is at least t(v−i), in which case its payment is t(v−i).

With this conditioning, we can analyze bidder i as in a single-bidder auction,
with an extra external reserve price of t(v−i). Let r∗ and R̂ denote the monopoly
price and revenue function for the underlying regular distribution F , respectively.
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The conditional expected revenue that i contributes to the revenue-maximizing so-
lution in the sub-environment of non-reserve bidders is R̂(max{t(v−i), r∗}). The
conditional expected revenue that i contributes to the Single Sample mechanism is
Evj [R̂(max{t(v−i), vj})]. Since vi, vj are independent samples from the regular distri-
bution F , Lemma 4.5 implies that the latter conditional expectation is at least 50%
of the former. Taking expectations over the previously fixed valuations of bidders
other than i and j, summing over the non-reserve bidders i and applying linearity of
expectation, and finally taking the expectation over the choice of the reserve bidder j
proves the theorem.

Remark 4.6 (Optimized Version of Theorem 4.2). We can improve the approximation
guarantee in Theorem 4.2 from 1

2
· n−1
n

to 1
2
. Instead of discarding the reserve bidder j,

we include it in the VCG computation in step (2) of the Single Sample mechanism.
An arbitrary other bidder h is used to set a reserve price vh for the reserve bidder j.
Like the other bidders, the reserve bidder is included in the final winning setW if and
only if it is chosen by the VCG mechanism in step (2) and also has a valuation above
its reserve price (vj ≥ vh). Its payment is then the maximum of its VCG payment
and vh.

The key observation is that, for every choice of a reserve bidder j, a non-reserve
bidder i, and valuations v, bidder i wins with bidder j included in the VCG computa-
tion in step (2) if and only if it wins with bidder j excluded from the computation. Like
Corollary 4.4, this observation can be derived from the fact that the VCG mechanism
can be implemented via a greedy algorithm in i.i.d. regular matroid environments. If
vi ≤ vj, then i cannot win in either case (it fails to clear the reserve); and if vi > vj,
then the greedy algorithm considers bidder i before j even if the latter is included in
the VCG computation.

Thus, the expected revenue from non-reserve bidders is the same in both versions
of the Single Sample mechanism. In the modified version, an application of Lemma 4.5
implies that the reserve bidder also contributes, in expectation, a 1

2
· 1
n
fraction of

the expected revenue of an optimal mechanism. Combining the contributions of
the reserve and non-reserve bidders yields an approximation guarantee of 1

2
for the

modified mechanism. This analysis, and hence also the bound in Lemma 4.5, is
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tight in the worst case — even in a digital goods auction with two bidders, and a
left-triangle distribution F for large H.

4.2.3 Proof Framework

Relaxing the matroid or i.i.d. assumptions of Section 4.2.2 introduces new challenges
in the analysis of the Single Sample mechanism. The expected revenue-maximizing
mechanism becomes complicated — nothing as simple as the VCG mechanism with
reserve prices. In addition, eager and lazy reserve prices are not equivalent.

Our proof framework hinges on the VCG-L mechanism with monopoly reserves,
which we use as a proxy for the optimal mechanism. The analysis proceeds in two
steps: (cf. Section 1.7.1)

1. Prove that the expected revenue of the VCG-L mechanism with monopoly re-
serves is close to that of an optimal mechanism.

2. Prove that the expected revenue of the Single Sample mechanism is close to
that of the VCG-L mechanism with monopoly reserves in the sub-environment
induced by the non-reserve bidders.

Given two such approximation guarantees, we can show that the expected revenue
of the Single Sample mechanism is a constant fraction of that of the optimal mecha-
nism. Section 4.2.2 implemented this plan for the special case of i.i.d. regular matroid
environments, where the VCG-L mechanism with monopoly reserves is optimal.

The arguments in Section 4.2.2 essentially accomplish the second step of the proof
framework, with an approximation factor of 2, for all regular downward-closed non-
singular environments. The harder part is the first step. The next two sections
establish such approximation guarantees under two incomparable sets of assumptions,
via two different arguments: regular matroid environments, and m.h.r. downward-
closed environments.

For regular matroid environments, we prove that the expected revenue of the VCG-
L mechanism with monopoly reserves is at least half that of an optimal mechanism
(Theorem 4.7), which in turn implies an approximation guarantee of 1

4
κ−1
κ

for the
Single Sample mechanism (Theorem 4.8).
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For m.h.r. downward-closed environments, we prove that the expected revenue
of the VCG-L mechanism with monopoly reserves is at least a 1/e fraction of the
optimal welfare (Theorem 4.9). This implies that the expected revenue of the Single
Sample mechanism is at least a 1

2e
· κ−1
κ

fraction of that of an optimal mechanism when
there are at least κ ≥ 2 bidders of every present attribute (Theorem 4.10). Via an
optimized analysis, we also prove an approximation factor of 1

4
· κ−1

κ
(Theorem 4.12).

This factor is 1
8
when κ = 2 and quickly approaches 1

4
as κ grows.

4.2.4 Regular Matroid Environments

This section proves an approximation guarantee for the Single Sample mechanism
for regular matroid environments. We follow the proof framework outlined in Sec-
tion 4.2.3, step 1 of which involves proving an approximation bound for the VCG-L
mechanism with monopoly reserves.

[45] proved that the expected revenue of the VCG-E mechanism with monopoly re-
serves (Section 2.2.2) is at least half that of an optimal mechanism in regular matroid
environments. The VCG-E and VCG-L mechanisms do not coincide in matroid envi-
ronments unless all bidders face a common reserve price (cf., Corollary 4.4), and the
results of [45] have no obvious implications for the VCG-L mechanism with monopoly
reserves in matroid environments with non-i.i.d. bidders. We next supplement the ar-
guments in [45] with some new ideas to prove an approximation guarantee for this
mechanism.

Theorem 4.7 (VCG-L With Monopoly Reserves). For every regular matroid envi-
ronment, the expected revenue of the VCG-L mechanism with monopoly reserves is at
least half of that of an optimal mechanism.

Proof. Consider a regular matroid environment. For a valuation profile v, let W (v)

and W ′(v) denote the winning bidders in the VCG-L mechanism with monopoly
reserves and in the optimal mechanism, respectively. We claim that

Ev

 ∑
i∈W (v)\W ′(v)

ϕi(vi)

 ≥ 0 (4.2.2)
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and

Ev

 ∑
i∈W (v)

pi(v)

 ≥ Ev

 ∑
i∈W ′(v)\W (v)

ϕi(vi)

 . (4.2.3)

Given these two claims, Lemma 3.9 in [45] immediately implies the theorem.2

Inequality (4.2.2) holds because the VCG-L mechanism with monopoly reserves
allocates to a bidder only if its valuation is above its monopoly reserve. Since a
monopoly reserve r∗i satisfies ϕi(r∗i ) = 0 and the virtual valuation function is nonde-
creasing (by regularity), this occurs only when a bidder has a non-negative virtual
valuation.

Proving inequality (4.2.3) requires a more involved argument. Fix a valuation
profile v and let W ′′(v) denote the winning bidders under the VCG mechanism with
zero reserve prices. Recall the definition of a matroid environment in terms of the
“exchange property” (Section 2.1). This property implies that all maximal feasible sets
have equal size and, since W ′′(v) must be maximal, that we can choose a subset S ⊆
W ′′(v)\W ′(v) such that S ∪W ′(v) and W ′′(v) have the same size.

We next use a non-obvious but well-known property of matroids (see e.g., Schrijver
[68, Corollary 39.12a]): given two feasible sets of equal size, such as W ′′(v) and
S ∪W ′(v), there is a bijection f from (S ∪W ′(v))\W ′′(v) to W ′′(v)\(S ∪W ′(v))

such that, for every bidder i in the domain, W ′′(v)\{f(i)}∪{i} is a feasible set. Since
S ⊆ W ′′(v), the domain of f is simply W ′(v)\W ′′(v). Since the VCG mechanism
chooses a welfare-maximizing set, the threshold bid (and hence the payment) of a
winning bidder f(i) in the range of the function f is at least vi. Summing over all
bidders in W ′(v)\W ′′(v) and using that f is a bijection, the revenue of the VCG

2The proof goes as follows. First, using (4.2.2), the virtual welfare of the optimal mechanism
from bidders in W (v) ∩W ′(v) is at most that of the virtual welfare of the VCG-L mechanism with
monopoly reserves. Second, using (4.2.3), the virtual welfare of the optimal mechanism from bidders
in W ′(v)\W (v) is at most the revenue of the VCG-L mechanism with monopoly reserves. Finally,
applying Myerson’s Lemma (Lemma 2.11) completes the proof.
The inequalities (4.2.2) and (4.2.3) almost correspond to the definition of “commensurate” in

Hartline and Roughgarden [45, Definition 3.8], but our second inequality is weaker. Nonetheless,
the proof of Lemma 3.9 in [45] carries over unchanged.
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mechanism is at least

∑
i∈W ′(v)\W ′′(v)

vi ≥
∑

i∈W ′(v)\W ′′(v)

ϕi(vi), (4.2.4)

where the inequality follows from the definition of a virtual valuation.
Finally, we use in two ways the fact that the allocation rule of the VCG-L mech-

anism with monopoly reserves differs from that of the VCG mechanism only via the
removal of bidders with negative virtual valuations. First, since W ′(v) includes no
bidders with negative virtual valuations, the right-hand side of (4.2.4) equals

∑
i∈W ′(v)\W (v)

ϕi(vi),

and, by Myerson’s Lemma (Lemma 2.11), the expected revenue of the VCG mecha-
nism is at least the expected value of this quantity. Second, again using Lemma 2.11,
the expected virtual welfare and hence the expected revenue of the VCG-L mecha-
nism with monopoly reserves is at least that of the VCG mechanism. This completes
the proof of inequality (4.2.3) and the theorem.

Theorem 4.7 establishes step 1 of our main technique. The arguments in Sec-
tion 4.2.2 now imply that the expected revenue of the Single Sample mechanism is
almost half that of the VCG-L mechanism with monopoly reserves (step 2). Precisely,
mimicking the proof of Theorem 4.2, gives the following result.

Theorem 4.8 (Single Sample Guarantee). For every regular matroid environment
with at least κ ≥ 2 bidders of every present attribute, the expected revenue of the
Single Sample mechanism is at least a 1

4
· κ−1
κ

fraction of that of an optimal mechanism
for the environment.

4.2.5 M.H.R. Downward-Closed Environments

We now implement the proof framework outlined in Section 4.2.3 for m.h.r. downward-
closed environments. We carry out the arguments for expected welfare, rather than
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expected revenue, because this gives a stronger result. (Such a result is not achievable
for regular matroid environments.) We first observe that by applying Lemma 2.15,
the expected optimal welfare in the sub-environment induced by non-reserve bidders
is at least a (κ− 1)/κ fraction of that in the original environment.

Analogous to Lemma 4.5, we require a technical lemma about the single-bidder
case to establish step 1 of our proof framework.

Lemma. Let F be an m.h.r. distribution with monopoly price r∗ and revenue func-
tion R̂. Let V (t) denote the expected welfare of a single-item auction with a posted
price of t and a single bidder with valuation drawn from F . For every nonnegative
number t ≥ 0,

R̂(max{t, r∗}) ≥ 1

e
· V (t). (4.2.5)

Proof. Let s denote max{t, r∗}. Recall that, by the definition of the hazard rate
function, 1 − F (x) = e−H(x) for every x ≥ 0, where H(x) denotes

∫ x
0
h(z)dz. Note

that since h(z) is non-negative and nondecreasing, H(x) is nondecreasing and convex.
We can write the left-hand side of (4.2.5) as s·(1−F (s)) = s·e−H(s) and, for a random
sample v from F ,

V (t) = Pr[v ≥ t] · E[v | v ≥ t]

= e−H(t) ·
[
t+

∫ ∞
t

e−(H(v)−H(t))dv

]
. (4.2.6)

By convexity of the function H, we can lower bound its value using a first-order
approximation at s:

H(v) ≥ H(s) +H ′(s)(v − s) = H(s) + h(s)(v − s) (4.2.7)

for every v ≥ 0. There are now two cases. If t ≤ r∗ = s, then h(s) = 1/s since r∗ is a
monopoly price.3 Starting from (4.2.6) and using that H is nondecreasing, and then

3One proof of this follows from the first-order condition for the revenue function p(1 − F (p));
alternatively, applying Myerson’s Lemma to the single-bidder case shows that r∗ = ϕ−1F (0) and
hence r∗ − 1/h(r∗) = ϕF (r

∗) = 0.
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substituting (4.2.7) yields

V (t) ≤
∫ ∞

0

e−H(v)dv

≤
∫ ∞

0

e−(H(s)+ v−s
s

)dv

= e · s · e−H(s).

If r∗ ≤ t = s, then the m.h.r. assumption implies that h(s) ≥ 1/s and (4.2.7) implies
that H(v) ≥ H(t) + (v − t)/t for all v ≥ t. Substituting into (4.2.6) gives

V (t) ≤ e−H(t) ·
[
t+

∫ ∞
t

e−(H(t)+ v−t
t
−H(t))dv

]
≤ e−H(t) ·

∫ ∞
0

e−
v−t
t dv

= e · s · e−H(s),

where in the second inequality we use that e−(v−t)/t ≥ 1 for every v ≤ t.

Lemma 4.2.5 implies that the expected revenue of the VCG-L mechanism with
monopoly reserves is at least a 1

e
fraction of the expected optimal welfare in every

downward-closed environment with m.h.r. valuation distributions.

Theorem 4.9 (VCG-L With Monopoly Reserves). For every m.h.r. downward-closed
environment, the expected revenue of the VCG-L mechanism with monopoly reserves
is at least a 1

e
fraction of the expected efficiency of the VCG mechanism.

Proof. Fix a bidder i and valuations v−i. This determines a winning threshold t

for bidder i under the VCG mechanism (with no reserves). Lemma 4.2.5 implies
that the conditional expected revenue obtained from i in the VCG-L mechanism
with monopoly reserves is at least a 1/e fraction of the conditional expected welfare
obtained from i in the VCG mechanism (with no reserves). Taking expectations over
v−i and then summing over all the bidders proves the theorem.

Considering a single bidder with an exponentially distributed valuation shows that
the bounds in Lemma 4.2.5 and Theorem 4.9 are tight in the worst case.
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Theorem 4.9 establishes step 1 of our main technique. The arguments in Sec-
tion 4.2.2 now imply that the expected revenue of the Single Sample mechanism is
almost half that of the VCG-L mechanism with monopoly reserves (step 2). Precisely,
mimicking the proof of Theorem 4.2, gives the following result.

Theorem 4.10 (Single Sample Guarantee #1). For every m.h.r. downward-closed
environment with at least κ ≥ 2 bidders of every present attribute, the expected revenue
of the Single Sample mechanism is at least a 1

2e
· κ−1

κ
fraction of the expected optimal

welfare in the environment.

We can improve the guarantee in Theorem 4.10 by optimizing jointly the two
single-bidder guarantees in Lemmas 4.2.5 (step 1) and 4.5 (step 2). This is done in
the next lemma.

Lemma 4.11. Let F be an m.h.r. distribution with monopoly price r∗ and revenue
function R̂, and define V (t) as in Lemma 4.2.5. For every nonnegative number t ≥ 0,

Ev[R̂(max{t, v})] ≥ 1

4
· V (t). (4.2.8)

Proof. Define the function H as in the proof of Lemma 4.2.5, and recall from that
proof that V (t) can be written as in (4.2.6). We show that the left-hand side of (4.2.8)
is at least 25% of that quantity.

Consider two i.i.d. samples v1, v2 from F . We interpret v2 as the random reserve
price v in (4.2.8) and v1 as the valuation of the single bidder. The left-hand side
of (4.2.8) is equivalent to the expectation of a random variable that is equal to t if
v2 ≤ t ≤ v1, which occurs with probability F (t) · (1−F (t)); equal to v2 if t ≤ v2 ≤ v1,
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which occurs with probability 1
2
(1− F (t))2; and equal to zero, otherwise. Hence,

Ev[R̂(max{t, v})] ≥ 1

2
(F (t) · (1− F (t)) · t

+(1− F (t))2 · E[min{v1, v2} | min{v1, v2} ≥ t]
)

=
1

2
(1− F (t)) ·

(
t · F (t) + (1− F (t))·[

t+ e2H(t)

∫ ∞
t

e−2H(v)dv
])

≥ 1

2
(1− F (t)) ·

[
t+ eH(t)

∫ ∞
t

e−H(2v)dv

]
(4.2.9)

=
1

4
(1− F (t)) ·

[
2t+

∫ ∞
2t

e−(H(v)−H(t))dv

]
≥ 1

4
(1− F (t)) ·

[
t+

∫ ∞
t

e−(H(v)−H(t))dv

]
, (4.2.10)

where in (4.2.9) and (4.2.10) we are using that H is non-negative, nondecreasing, and
convex. Comparing (4.2.6) and (4.2.10) proves the lemma.

We then obtain the following optimized version of Theorem 4.10.

Theorem 4.12 (Single Sample Guarantee #2). For every m.h.r. downward-closed
environment with at least κ ≥ 2 bidders of every present attribute, the expected revenue
of the Single Sample mechanism is at least a 1

4
· κ−1

κ
fraction of the expected optimal

welfare in the environment.

The proof of Theorem 4.12 is the same as that of Theorem 4.2, with the following
substitutions: the welfare of the VCGmechanism (with no reserves) plays the previous
role of the revenue of the VCG-L mechanism with monopoly reserves; Lemma 4.11
replaces Lemma 4.5.

Remark 4.13 (Theorem 4.12 Is Tight). Our analysis of the Single Sample mechanism
is tight for all values of κ ≥ 2, as shown by a digital goods environment with κ

bidders with valuations drawn i.i.d. from an exponential distribution with rate 1: the
expected optimal welfare is κ, and a calculation shows that the expected revenue of
Single Sample is (κ− 1)/4.



CHAPTER 4. VCG WITH SAMPLED RESERVES 60

Since the revenue of every mechanism is bounded above by its welfare, we have
the following corollary.

Corollary 4.14. For every m.h.r. environment with at least κ ≥ 2 bidders of every
present attribute, the Single Sample mechanism gives a prior-independent 1

4
· κ−1

κ

approximation to the optimal expected revenue.

4.2.6 Counterexample for Regular Downward-Closed Envi-

ronments

We now sketch an example showing that a restriction to m.h.r. valuation distributions
(as in Section 4.2.5) or to matroid environments (as in Section 4.2.4) is necessary for
the VCG-L mechanism with monopoly reserves and the Single Sample mechanism to
have constant-factor approximation guarantees. The following example is adapted
from Hartline and Roughgarden [45, Example 3.4].

For n sufficiently large, consider two “big” bidders and n “small” bidders 1, 2, . . . , n.
The feasible subsets are precisely those that do not contain both a big bidder and
a small bidder. Fix an arbitrarily large constant H. Each big bidder’s valuation
is deterministically 1

2
n
√

lnH, so the expected revenue of an optimal mechanism is
clearly at least n

√
lnH. The small bidders’ valuations are i.i.d. draws from the left-

triangle distribution with parameter H: F (z) = 1− 1
z+1

on [0, H) and F (H) = 1. For
n sufficiently large, the sum of the small bidders’ valuations is tightly concentrated
around n lnH.

We complete the sketch for the VCG-L mechanism with monopoly reserves; the
argument for the Single Sample mechanism is almost identical. The VCG mechanism
almost surely chooses all small bidders as its preliminary winner set, with a threshold
bid of zero for each. The expected revenue extracted from each small winner, via
its monopoly reserve H, is at most 1.4 Thus, the expected revenue of the VCG-L

4A subtle point is that each small bidder’s valuation is now drawn at random from F , conditioned
on the event that the VCG mechanism chose all of the small bidders. But since the small bidders
are chosen with overwhelming probability (for large n and H), the probability that a given small
bidder is pivotal is vanishingly small, so it still contributes at most 1 to the expected revenue of the
mechanism.
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mechanism with monopoly reserves is not much more than n, which is arbitrarily
smaller than the maximum-possible as H →∞.

4.2.7 Computationally Efficient Variants

In the second step of the Single Sample mechanism, a different mechanism can be
swapped in for the VCG mechanism. One motivation for using a different mechanism
is computational efficiency (although this is not a first-order goal in this thesis). For
example, for combinatorial auctions with single-minded bidders — where feasible
sets of bidders correspond to those desiring mutually disjoint bundles of goods —
implementing the VCG mechanism requires the solution of a packing problem that is
NP -hard, even to approximate.

For example, the proof of Theorem 4.12 evidently implies the following more
general statement: if step (2) of the Single Sample mechanism uses a truthful mech-
anism guaranteed to produce a solution with at least a 1/c fraction of the maximum
welfare, then the expected revenue of the corresponding Single Sample mechanism
is at least a 1

4c
κ−1
κ

fraction of the expected optimal welfare (whatever the underly-
ing m.h.r. downward-closed environment). For example, for knapsack auctions —
where each bidder has a public size and feasible sets of bidders are those with to-
tal size at most a publicly known budget — we can substitute the polynomial-time,
(1 + ε)-approximation algorithm by [14]. For combinatorial auctions with single-
minded bidders, we can use the algorithm of [57] to obtain an O(

√
m)-approximation

in polynomial time, where m is the number of goods. This factor is essentially opti-
mal for polynomial-time approximation, under appropriate computational complexity
assumptions [57].

4.3 Revenue Guarantees with Multiple Samples

This section modifies the Single Sample mechanism to achieve improved guarantees
via an increased number of samples from the underlying valuation distributions, and
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provides quantitative and distribution-independent polynomial bounds on the number
of samples required to achieve a given approximation factor.

4.3.1 Estimating Monopoly Reserve Prices

Improving the revenue guarantees of Section 4.2 via multiple samples requires thor-
oughly understanding the following simpler problem: Given an accuracy parameter ε
and a regular distribution F , how many samples m from F are needed to compute
a reserve price r that is (1 − ε)-optimal, meaning that R̂(r) ≥ (1 − ε) · R̂(r∗) for
a monopoly reserve price r∗ for F? Recall from Section 4.2.2 that R̂(p) denotes
p · (1 − F (p)). We pursue bounds on m that depend only on ε and not on the dis-
tribution F — such bounds do not follow from the Law of Large Numbers and must
make use of the regularity assumption.

Given m samples from F , renamed so that v1 ≥ v2 ≥ · · · ≥ vm, an obvious idea is
to use the reserve price that is optimal for the corresponding empirical distribution,
which we call the empirical reserve:

argmaxi≥1 i · vi. (4.3.1)

Interestingly, this naive approach does not in general give distribution-independent
polynomial sample complexity bounds. Intuitively, with a heavy-tailed distribution F ,
there is a constant probability that a few large outliers cause the empirical reserve to
be overly large, while a small reserve price has much better expected revenue for F .

Our solution is to forbid the largest samples from acting as reserve prices, leading
to a quantity we call the guarded empirical reserve (with respect to an accuracy
parameter ε):

argmaxi≥εm i · vi. (4.3.2)

We use the guarded empirical reserve to prove distribution-independent polyno-
mial bounds on the sample complexity needed to estimate the monopoly reserve of a
regular distribution.
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Lemma 4.15 (Estimating the Monopoly Reserve). For every regular distribution F
and sufficiently small ε, δ > 0, the following statement holds: with probability at least
1 − δ, the guarded empirical reserve (4.3.2) of m ≥ c(ε−3(ln ε−1 + ln δ−1)) samples
from F is a (1− ε)-optimal reserve, where c is a constant that is independent of F .

Proof. Set γ = ε/11 and consider m samples v1 ≥ v2 ≥ · · · ≥ vm from F . Define “q-
values” via by qt = 1−F (vt) and q∗ = 1−F (r∗), where r∗ is a monopoly price for F .
Since the q’s are i.i.d. samples from the uniform distribution on [0, 1], the expected
value of the quantile qt is t/(m + 1), which we estimate by t/m for simplicity. An
obvious approach is to use Chernoff bounds to argue that each qt is close to this
expectation, followed by a union bound. Two issues are: for small t’s, the probability
that t/m is a very good estimate of qt is small; and applying the union bound to
such a large number of events leads to poor probability bounds. In the following, we
restrict attention to a carefully chosen small subset of quantiles, and take advantage
of the properties of the revenue functions of regular distributions to get around these
issues.

First we choose an integer index sequence 0 = t0 < t1 < · · · < tL = m in the
following way. Let t0 = 0 and t1 = bγmc. Inductively, if ti is defined for i ≥ 1 and
ti < m, define ti+1 to be the largest integer in {1, . . . ,m} such that ti < ti+1 ≤ (1+γ)ti.
If m = Ω(γ−2), then ti + 1 ≤ (1 + γ)ti for every ti ≥ γm and hence such a ti+1 exists.
Observe that L ≈ log1+γ

1
γ

= O(γ−2) and ti+1 − ti ≤ γm for every i ∈ {0, . . . , L− 1}.
We claim that, with probability 1, a sampled quantile qt with t ≥ γm differs from

t/m by more than a (1 ± 3γ) factor only if some quantile qti with i ∈ {1, 2, . . . , L}
differs from ti/m by more than a (1 ± γ) factor. For example, suppose that qt >
(1+3γ)t
m

with t ≥ γm; the other case is symmetric. Let i ∈ {1, 2, . . . , L} be such that
ti ≤ t ≤ ti+1. Then

qti+1
≥ qt >

(1 + 3γ)t

m
≥ (1 + 3γ)ti

m
≥ (1 + 3γ)ti+1

(1 + γ)m
≥ (1 + γ)ti+1

m
,

as claimed.
We next claim that the probability that qti differs from ti/m by more than a (1±γ)

factor for some i ∈ {1, 2, . . . , L} is at most 2Le−γ
3m/4. Fix i ∈ {1, 2, . . . , L}. Note
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that qti > (1 + γ) ti
m

only if less than ti samples have q-values at most (1 + γ) ti
m
. Since

the expected number of such samples is (1 + γ)ti, Chernoff bounds (e.g., [60]) imply
that the probability that qti > (1 + γ) ti

m
is at most

exp{−γ2ti/3(1 + γ)} ≤ exp{−γ2ti/4} ≤ exp{−γ3m/4},

where the inequalities use that γ is at most a sufficiently small constant and that
ti ≥ γm for i ≥ 1. A similar argument shows that the probability that qti < (1−γ) ti

m

is at most exp{−γ3m/4}, and a union bound completes the proof of the claim. If
m = Ω(γ−3(logL + log δ−1)) = Ω(ε−3(log ε−1 + log δ−1)), then this probability is at
most δ.

Now condition on the event that every quantile qti with i ∈ {1, 2, . . . , L} differs
from ti/m by at most a (1 ± γ) factor, and hence every quantile qt with t ≥ γm

differs from t/m by at most a (1±3γ) factor. We next show that there is a candidate
for the guarded empirical reserve (4.3.2) which, if chosen, has good expected revenue.
Choose i ∈ {0, 1, . . . , L−1} so that ti/m ≤ q∗ ≤ ti+1/m. Define t∗ as ti if q∗ ≥ 1/2 and
ti+1 otherwise. Assume for the moment that q∗ ≤ 1/2. By the concavity of revenue
function in probability space R(q) — recall Section 4.2.2 — R(qti+1

) lies above the
line segment between R(q∗) and R(1). Since R(1) = 0, this translates to

R(qt∗) ≥ R(q∗) ·
1− qti+1

1− q∗
≥ R(q∗) ·

1− (1 + 3γ)
(
ti
m

+ γ
)

1− ti
m

≥ (1− 5γ) ·R(q∗),

where in the final inequality we use that ti
m
≤ 1

2
and γ is sufficiently small. For the

case when q∗ ≥ 1
2
, a symmetric argument (using R(0) instead of R(1) and qti instead

of qti+1
) proves that R(qt∗) ≥ (1− 5γ) ·R(q∗).

Finally, we show that the guarded empirical reserve also has good expected rev-
enue. Let the maximum in (4.3.2) correspond to the index t̂. Since t̂ was chosen
over t∗, we have t̂ · vt̂ ≥ t∗ · vt∗ . Using that each of qt̂, qt∗ is approximated up to a
(1± 3γ) factor by t̂/m, t∗/m yields

R(qt) = qt̂vt̂ ≥
(1− 3γ)t̂

m
vt̂ ≥

(1− 3γ)t∗

m
vt∗ ≥

1− 3γ

1 + 3γ
qt∗vt∗ =

1− 3γ

1 + 3γ
R(qt∗)
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and hence
R(qt) ≥

(1− 5γ)(1− 3γ)

1 + 3γ
R(q∗) ≥ (1− 11γ)R(q∗).

Since γ = ε/11, the proof is complete.

Remark 4.16 (Optimization for M.H.R.Distributions). There is a simpler and stronger
version of Lemma 4.15 for m.h.r. distributions. We use a simple fact, first noted
in Hartline et al. [47, Lemma 4.1], that the selling probability q∗ at the monopoly
reserve r∗ for an m.h.r. distribution is at least 1/e. Because of this, we can take
the parameter t1 in the proof of Lemma 4.15 to be bm/ec instead of bγmc without
affecting the rest of the proof. This saves a γ factor in the exponent of the bound
on the probability that some qti is not well approximated by ti/m, which translates
to a new sample complexity bound of m ≥ c(ε−2(ln ε−1 + ln δ−1)), where c is some
constant that is independent of the underlying distribution. Also, this bound remains
valid even for the empirical reserve (4.3.1) — the guarded version in (4.3.2) is not
necessary.

4.3.2 The Many Samples Mechanism

In the following Many Samples mechanism, we assume that an accuracy parameter ε
is given, and usem to denote the sample complexity bound of Lemma 4.15 (for regular
valuation distributions) or of Remark 4.16 (for m.h.r. distributions) corresponding to
the accuracy parameter ε

3
and failure probability ε

3
. The mechanism is only defined

if every present attribute is shared by more than m bidders.

(1) For each represented attribute a, pick a subset Sa of m reserve bidders with
attribute a uniformly at random from all such bidders.

(2) Run the VCG mechanism on the sub-environment induced by the non-reserve
bidders to obtain a preliminary winning set P .

(3) For each bidder i ∈ P with attribute a, place i in the final winning set W if
and only if vi is at least the guarded empirical reserve ra of the samples in Sa.
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Charge every winner i ∈ W with attribute a the maximum of its VCG payment
computed in step (2) and the reserve price ra.

We prove the following guarantees for this mechanism.

Theorem 4.17 (Guarantees for Many Samples). The expected revenue of the Many
Samples mechanism is at least:

(a) a (1−ε) fraction of that of an optimal mechanism in every i.i.d. regular matroid
environment with at least n ≥ 3m/ε = Θ(ε−4 log ε−1) bidders;

(b) a 1
2
(1 − ε) fraction of that of an optimal mechanism in every regular matroid

environment with at least n ≥ 3m/ε = Θ(ε−4 log ε−1) bidders;

(c) a 1
e
(1 − ε) fraction of the optimal expected welfare in every downward-closed

m.h.r. environment with at least κ ≥ 3m/ε = Θ(ε−3 log ε−1) bidders of every
present attribute.

Bidders with i.i.d. and exponentially distributed valuations show that part (c) of
the theorem is asymptotically optimal (as is part (a), obviously).

Proof. The lower bound κ ≥ 3m/ε on the number of bidders of each attribute implies
that at most an ε/3 fraction of all bidders are designated as reserve bidders. Lemma
2.15 implies that the expectation, over the choice of reserve bidders, of the expected
revenue of an optimal mechanism for and the expected optimal welfare of the sub-
environment induced by the non-reserve bidders are at least a (1− ε

3
) fraction of those

in the full environment.
Now condition on the choice of reserve bidders, but not on their valuations. Fix a

non-reserve bidder i, and condition on the valuations of all other non-reserve bidders.
Let t denote the induced threshold bid for i and r∗ a monopoly price for the valuation
distribution F of i. The conditional expected revenue obtained from i using the
price max{r∗, t} is precisely that obtained by the VCG-L mechanism with monopoly
reserves for the sub-environment induced by the non-reserve bidders.

The Many Samples mechanism, on the other hand, uses the price max{r, t},
where r is the guarded empirical reserve of the reserve bidders that share i’s attribute.
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By Lemma 4.15 and our choice of m, r is (1 − ε
3
)-optimal for F with probability at

least 1 − ε
3
. Concavity of the revenue function (cf., Figure 3.3.1) and an easy case

analysis shows that, whenever r is (1− ε
3
)-optimal, the conditional expected revenue

from i with the price max{r, t} is at least a (1 − ε
3
) fraction of that with the price

max{r∗, t}, for every value of t. Since valuations are independent of each other and
the choice of the reserve bidders, the expected revenue from i in the Many Samples
mechanism, conditioned on the choice of reserve bidders and on the valuations of
the other non-reserve bidders, is at least a (1 − ε

3
)2 ≥ (1 − 2

3
ε) fraction of that of

the VCG-L mechanism with monopoly reserves. Removing the conditioning on the
valuations of other non-reserve bidders; summing over the non-reserve bidders; and
removing the conditioning on the choice of reserve bidders shows that the expected
revenue of the Many Samples mechanism is at least a (1− 2

3
ε) fraction of that of the

VCG-L mechanism with monopoly reserves on the sub-environment induced by the
non-reserve bidders. The three parts of the theorem now follow from Corollary 4.4,
Theorem 4.7, and Theorem 4.9, respectively.

Remark 4.18 (Case Study: Digital Goods Auctions). Our results in this section have
interesting implications even in the special case of digital goods auctions. We note
that there is no interference between different bidders in such an auction, so the
general case of multiple attributes reduces to the single-attribute i.i.d. case (each
attribute can be treated separately).

The Deterministic Optimal Price (DOP) digital goods auction offers each bidder i
a take-it-or-leave offer equal to the empirical reserve of the other n − 1 bidders.
The expected revenue of the DOP auction converges to that of an optimal auction
as the number n of bidders goes to infinity, provided valuations are i.i.d. samples
from a distribution with bounded support [36] or from a regular distribution [69].
However, the number of samples required in these works to achieve a given degree of
approximation depends on the underlying distribution F .

As an alternative, consider the variant of DOP that instead uses the guarded
empirical reserve (4.3.2) of the other n − 1 bidders to formulate a take-it-or-leave-it
offer for each bidder. Our Lemma 4.15 implies a distribution-independent bound for
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this auction: provided the number of bidders is Ω(ε−3 log ε−1), its expected revenue
is at least a (1− ε) times that of the optimal auction.

4.4 Prior-Independent Mechanisms Via Reductions

This section describes a subtle form of reduction to Bulow-Klemperer-style theorems
for duplicate environments of Hartline and Roughgarden [45]. The resulting pairing
mechanisms are more complicated than the single sample mechanism, and the ap-
proximation ratio is worse. However, the approach is very general: once we have a
new version of Bulow-Klemperer-style theorem for duplicate environments, this re-
duction directly gives us a prior-independent approximation mechanism, which could
be a good starting point for searching for simpler mechanisms with better guarantees.

Single-Dimensional Duplicate Environment

As discussed in Section 5.3, prior-independent approximation is tightly related to
Bulow-Klemperer-style theorems. For single-dimensional downward-closed environ-
ments, a Bulow-Klemperer-style theorem was proved in Hartline-Roughgarden [45],
which is based on duplicating bidders.

Formally, given a single-dimensional downward-closed environment, the duplicate
environment is constructed as follows. For every original bidder i with distribution
Fi, introduce an extra bidder i′ into the system, called the duplicate of i, whose value
is independently drawn from Fi. A bidder set S in the duplicate environment is
feasible if (1) at most one from each bidder and its duplicate is in S, and (2) the set
we obtain from replacing every duplicate bidder in S by its original bidder is feasible
in the original environment.

Hartline and Roughgarden proved the following:

Theorem. [45] Given a downward-closed environment, the expected revenue of the
VCG mechanism over the duplicate environment is at least ρ fraction of that of the
optimal mechanism over the original environment, where:

• ρ = 1
2
for regular matroid environments
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• ρ = 1
3
for m.h.r. downward-closed environments.

This theorem is also prior-independent in nature, except that VCG is run over a
different set of bidders than the original ones. However, there does exist a subtle form
of reduction, showing that such a theorem implies a prior-independent approximation,
at the cost of additional constant loss in ratio.

A Reduction Based on A Pairing Mechanism

Definition 4.19 (Pairing Mechanism). Given a non-singular downward-closed envi-
ronment, the pairing mechanism does the following:

1. For every attribute a, group the bidders with attribute a into pairs arbitrarily.
The bidders that are left out due to odd parity are removed from the system.
Assign one bidder of each pair into E1, and the other into E2.

2. Choose p from 1,2 uniformly at random, and call Ep be the main bidders. (E3−p

will never win)

3. Construct the duplicate environment of Ep by drawing the paired bidders from
E3−p as the duplicates.

4. Run VCG over the duplicate environment to obtain a preliminary winning set
W .

5. Let W ∩ Ep be the final winning set.

Note that the pairing mechanism is a truthful mechanism, because a bidder is either
in E3−p and never wins, or is part of Ep, participating in a VCG mechanism.

Theorem 4.20. Given a downward-closed environment , if the expected revenue
of VCG over its duplicate environment is at least ρ fraction of that of an optimal
mechanism over the original environment, then the pairing mechanism gives a prior-
independent ρ

6
-approximation to optimal expected revenue.
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Proof. The expected revenue of the pairing mechanism is exactly half of the expected
revenue of the VCG mechanism over the duplicate environment it constructed in the
process, which by assumption is at least ρ fraction of the expected revenue of an
optimal mechanism of the sub-environment induced by Ep. Removing the bidders
E3−p in worse case loses another factor of 1

3
(when there are three bidders in each

group). All in all we achieve a prior-independent ρ
6
-approximation.



Chapter 5

Supply-Limiting Mechanisms

In this chapter, we propose mechanisms based on the welfare-maximization with
supply-limiting, and prove that they give prior-independent approximations. This
chapter is mainly based on [66].

5.1 Introduction

5.1.1 A Matching Problem

Consider the problem of matching agents to a set of non-identical items for sale, with
the goal of maximizing the seller’s revenue. For example, a travel website selling hotel
accommodation would like to match agents to a set of hotel rooms. Each agent is
unit-demand in the sense that she is interested in one item. For example each agent
only needs one hotel room. Each agent has a different private value for each type of
room. Agents’ values are drawn from prior distributions, with one distribution per
item (one distribution for a suite at the Ritz, another for a room at Best Western,
and so on). The seller wishes to maximize her expected revenue. A far-seeing seller
might also want to (approximately) maximize social welfare as well.

Maximizing expected revenue in the matching problem above is difficult even when
the value distributions are known. The difficulty stems from the problem’s multi-
dimensional nature. The theory of optimal auction design stops short of solving

71



CHAPTER 5. SUPPLY-LIMITING MECHANISMS 72

Algorithm 5.1 A Generic Prior-Independent Mechanism

1. Set a supply limit equal to half of the number of bidders.

2. Run the VCG mechanism subject to this supply limit.

settings in which the description of an agent’s preferences requires multiple param-
eters. Recent breakthrough work of Chawla et al. [19] circumvents this limitation
by introducing approximately optimal mechanisms. These mechanisms make use of a
priori knowledge of the value distributions, and are somewhat complicated.

5.1.2 A Supply-Limiting Mechanism

Our mechanisms are extremely simple, and are based on the natural idea of artificially
limiting the supply to increase bidder competition for the items.

Previous prior-independent mechanisms are based largely on some form of ran-
dom sampling to estimate the prior distributions. Our mechanisms in this chapter
are the first known prior-independent mechanisms for nontrivial multi-dimensional
environments.1 In addition, our mechanism also guarantees approximately-optimal
social welfare, even though our weak distributional assumptions allow the revenue
and welfare of other mechanism to be very far from each other.

This paper shows that under minimal regularity assumptions, the simple, prior-
independent mechanism above and its revenue guarantee generalize to signifi-
cantly more complex settings. In other words, we identify settings in which
the prior-independent VCG mechanism with limited supply is guaranteed to have
approximately-optimal expected revenue. For the matching problem discussed above,
we prove the following theorem.

Theorem 5.1 (Prior-Independent Mechanism for Matching (Informal)). For every
matching environment, the supply-limiting mechanism in Algorithm 5.1 gives a prior-
independent constant factor approximation to optimal expected revenue.

1Simultaneously and independently, another group obtained similar results using different mech-
anisms; see Section 5.1.5 for a detailed discussion.
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The constant fractions we achieve are quite good in many cases, e.g., we achieve
a fraction of 1

4
when the number of bidders exceeds the number of items.

5.1.3 Technical Approach: Reduction to Proving Bulow-

Klemperer-Style Theorems

Our technical approach to establishing approximation properties of supply-limiting
mechanisms is based on the general reduction to proving Bulow-Klemperer-style the-
orems. We describe this general reduction in Section 5.3.

To instantiate the reduction in various single-dimensional environments, we can
use generalizations of the original Bulow-Klemperer result to matroid environments
[26] and to non-i.i.d. bidders [45]. For the matching problem, we need to prove the
first generalization of the original Bulow-Klemperer theorem to a nontrivial multi-
dimensional environment.

Theorem 5.2 (Bulow-Klemperer-Style Theorem for Matching (Informal)). For every
matching environment with n bidders and m items, the expected revenue of the VCG
mechanism with either (1) m additional bidders or (2) O(n) additional bidders and
a supply limit n, is at least a constant fraction of the optimal expected revenue in the
original environment.

5.1.4 Our Results and Organization

Our main result is a collection of approximately-optimal supply-limiting mechanisms
for different auction environments with i.i.d. regular bidders, as detailed in Table
5.1.1. For single-dimensional environments, we show supply-limiting mechanisms for
multi-unit, parallel multi-unit, and matroid environments. For multi-dimensional
environments, we show three versions of a supply-limiting mechanism for matching
environments, each with a different approximation guarantee. The choice among
these versions should be according to the parameters of the environment at hand.
Our results generalize to multi-unit matching environments as well.
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Environment Supply Limit / Augmentation Ratios to OPT
k-Unit Auctions SL n

2
1
2
(Thm 5.5)

BK add k bidders 1 (Thm 2.14)
Matroid SL b r

2
c 1

4
(Thm 5.8)

BK add a disjoint base 1 (Thm 5.9)
Parallel Multi-Unit SL n

2
globally, kj

2
for item j 1

4
(Thm 5.10)

BK add kj bidders for item j 1
2
(Thm 5.11)

Matching with m ≤ n
2

SL bn
2
c 1

2
(Thm 5.14)

BK add m bidders 1 (Thm 5.17)
Matching with m ≥ n

2
SL n

2
n

4m
(Thm 5.15 )

BK add n bidders n
2m

(Thm 5.18)
SL n

3
1
27

(Thm 5.16)
BK add O(n) bidders 1

9
(Thm 5.19)

Multi-Unit Matching SL n
3
globally, kj

2
for item j 1

27
(Thm 5.35)

BK add 2n bidders 1
9
(Thm 5.36)

Here n is the number of bidders, assumed to be multiple of 2 or 3 if needed, m is the
total number of units of items, r is the rank of the matroid, kj is the number of units
available for item j. SL=Supply Limiting. BK=Bulow-Klemperer-Style Theorem.

Table 5.1.1: Summary of Main Results

For simplicity of notation we will assume that n/2 (or n/3 where appropriate) is
an integer if needed. If this is not the case, consider removing a minimum amount of
bidders before running the mechanism so that this is true. Lemma 5.4 implies that
we suffer a vanishingly small loss in factors.

5.1.5 Related Work

Most related to our results are the following. Dughmi et al. [26] investigate condi-
tions under which VCG yields near-optimal revenue, and use a generalized Bulow-
Klemperer result to show this is guaranteed in matroid environments with sufficient
competition in the form of disjoint bases. Our reduction encompasses and general-
izes this result. Hartline and Roughgarden [45]also study conditions for when simple
Vickrey-based mechanisms achieve near-optimal revenue and in particular they de-
rive an anonymous-reserve mechanism from one of their Bulow-Klemperer-style re-
sults [45, Theorem 5.1]. This mechanism however is not prior-independent and is
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inherently limited to single items [45, Example 5.4]. Chawla et al. [19] use posted-
price mechanisms that rely on prior distributions — i.e., mechanisms that are not
prior-independent — to achieve a 1

6.75
-approximation for the matching setting with

multiple units and non-i.i.d. bidders, and also a 3
32
-approximation for a more general

environment than what we consider, namely a graphical matroid with unit-demand
bidders.

In terms of techniques, our limited-supply mechanisms are special cases of
maximal-in-range mechanisms (see, e.g., [63]), which are well-known to be truth-
ful. We apply a reduction of Chawla et al. that relates single- and multi-dimensional
environments ([19], see Section 5.2). Some of our techniques are inspired by Chawla
et al. [20]’s analysis of the performance of a VCG mechanism in a job scheduling
context.

Finally, the paper of Devanur et al. [23] is very closely related to this work. Both
considered essentially the same set of problems and gave similar results, though using
different mechanisms. The mechanisms in [23] are arguably quite complicated, cer-
tainly more complex and less natural than the supply-limiting mechanisms studied
here. On the other hand, the mechanisms in [23] seem to be a bit easier to analyze
than supply-limiting mechanisms, and they also achieve better constant factors in the
matching problem for the case when m is large. Both analyses share some common
preliminary steps, but at their core are quite different, reflecting the different mech-
anisms studied. Finally, in the matching problems studied in the original version of
the present work, each item was assumed to have unit supply; we were inspired by
[23] to pursue the more general multi-unit results presented here.

5.2 Preliminaries

Items v.s. Units We distinguish between items — which are of different kinds,
and units — which are different copies of the same item. While bidders have the
same value for different units of the same item, their values for different items are
independent from one another (although possibly drawn from the same distribution).
We use the following notation: item j means the j-th kind of item sold in the auction,
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kj denotes the number of units available of item j, and m =
∑

j kj is the total number
of units available of all items.

Multi-Dimensional Matching Environments

A (single-unit) matching environment is a multi-dimensional environment with n

bidders and m different items for sale. We only have one unit of each item available,
and a multi-unit version of matching environment will be studied in Section 5.10.
Bidders are unit-demand, in the sense that each bidder can only win at most one
item. Feasible allocations are all matchings of items to bidders, such that each bidder
wins at most one item and each item is assigned to at most one bidder. We can
also impose an additional supply limit of ` ≤ m, restricting the matching to have
size at most `. Bidder i has a private value vi,j for winning item j, which is drawn
independently at random from a distribution Fi,j. We say the bidders are i.i.d. if Fi,j
does not depend on i, which we can simply denote by Fj. Our supply-limiting results
apply to i.i.d. matching environments in which the bidders are i.i.d.

In this chapter, for matching problems, we assume that the distribution has a
positive smooth density function all over the support. This allows us to say that the
maximum weighted matching is unique with probability 1, so that tie-breaking issues
can be ignored.

Representative Environments for Upper-Bounding Optimal Multi-

Dimensional Revenue

Characterizing the optimal mechanisms (in the ex post IC sense) for multi-
dimensional matching environments is currently an open question. Chawla et al. [19]
introduced the concept of representative environments in order to upper-bound the
optimal expected revenue of a mechanism in i.i.d. matching environments.

Given a matching environment Env with n i.i.d. bidders, m items, and value
distributions {Fj}j, the representative environment Envrep has nm single-dimensional
bidders, one for every pair of original bidder and item (i, j). The m bidders in Envrep

that corresponds to original bidder i are called i’s representatives. Like bidder i’s
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value for item j in Env, representative (i, j)’s value vi,j for winning in Envrep is drawn
independently at random from Fj. Note that every subset S of representatives in
Envrep corresponds to a (not necessarily feasible) allocation in Env — if representative
(i, j) is in S then item j is allocated to bidder i in Env. Feasible allocations in
Envrep are subsets of representatives such that the corresponding allocation in Env

is feasible. In particular, since every bidder i in Env is unit-demand, only one of its
representatives in Envrep can win at a time.

Given a truthful mechanismM for Env, its allocation rule can be used to construct
a truthful mechanism Mrep for Envrep. The following lemma of Chawla et al. [19]
relates the expected revenue of the two mechanisms. Intuitively, Envrep involves
more competition than Env since representatives of the same bidder compete with
one another, and so the expected revenue ofMrep is higher.

Lemma 5.3. [19] For every matching environment, and a mechanism M, the ex-
pected revenue ofMrep for Envrep is at least the expected revenue ofM for Env.

5.3 Reduction to Bulow-Klemperer-Style State-

ments

5.3.1 General Reduction to Bulow-Klemperer-Style State-

ments

As suggested in Section 3.3.5, for digital goods auctions with two bidders, prior-
independent approximation guarantee of a supply-limiting mechanism can follow from
the Bulow-Klemperer theorem. In fact, there is a much more general reduction from
proving a prior-independent approximation guarantee to proving a Bulow-Klemperer-
style statement.

Essentially, we can re-interpret a supply-limiting mechanism as doing the following
two steps.

1. Restriction: Restrict the auction environment by dropping bidders along with
supply for them.
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Guarantee: Optimal expected revenue of the restricted environment approxi-
mates that of the original environment.
Proof: By a general fractional subadditivity property of optimal expected rev-
enue in the bidder set. (Lemma 5.4 )

2. Augmentation+VCG: Augment the restricted environment by adding bid-
ders without changing the supply.
Guarantee: Expected revenue of VCG over augmented environment approxi-
mates optimal expected revenue of original environment.
Proof: By a suitable Bulow-Klemperer-style theorem.

A technical requirement is that if we first apply the restriction operation, and then
apply the expansion operation, the resulting environment is a sub-environment of
the original environment. This is important as our prior-independent mechanism is
essentially to run the VCG mechanism over this sub-environment.

5.3.2 Examples of Reductions

Let n be even. For digital goods auctions with n bidders, the restriction operation
corresponds to removing half of the bidders (with total supply changed to n

2
), and the

expansion operation corresponds to adding back half of the bidders, but still main-
taining the supply limit of n

2
. The corresponding Bulow-Klemperer-style statement

then says that instead of running the optimal mechanism for digital goods auction,
we are better off first doubling the number of bidders, and then running the VCG
mechanism. This is effectively the generalized Bulow-Klemperer theorem for n-unit
auctions (Theorem 2.14). It follows that the VCG mechanism with half of the supply
gives a prior-independent 1

2
-approximation.

In Chapter 5, we study various reductions where restriction corresponds to supply-
limiting. In Section 4.4, we also describe a subtle form of reduction for single-
dimensional environments where bidders are not i.i.d.
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5.3.3 Fractional Subadditivity of Optimal Revenue

Given an auction environment, for a bidder set S, let OPT(S) be the optimal expected
revenue of a mechanism over the sub-environment induced by S. The following prop-
erty of OPT(S) is crucial in allowing our reduction to work in both single-dimensional
and multi-dimensional environments.

Lemma 5.4 (Fractional Subadditivity of Optimal Expected Revenue). For every
(single-dimensional or multi-dimensional) auction environment, OPT(·) is fraction-
ally subadditive.

Proof. By revenue monotonicity, it is sufficient to prove the claim for the case that
Tj ⊆ S for all j.

For every j, the optimal mechanism OPT(S) induces a randomized mechanism
Mj for set Tj. In particular, this mechanism randomly draws values for bidders
from S\Tj according to their distributions, and simulates OPT(S) on Tj, cancelling
outcome for fake bidders of S\Tj. The expected revenue ofMj (also denoted byMj)
is bidder-wise the same as the expected revenue of OPT(S) for all bidders in Tj. By
the fractional covering assumption,

∑
j αjMj ≥ OPT(S). Our lemma follows from

the fact that OPT(Tj) ≥Mj for every j.

5.4 Supply-Limiting for I.I.D. k-Unit Auctions

In this section we formally prove the following theorem, in order to illustrate our
general approach in a simple single-dimensional environment. To simplify notation
we assume that the number of bidders n is even. This assumption is essentially
without loss of generality since if n is odd, one can first remove an arbitrary bidder
from the environment, losing at most a 1/n-fraction of the optimal expected revenue
by Lemma 2.15. Let VCG≤n/2 be the mechanism that allocate to maximize welfare,
subject to the supply constraint that at most n

2
bidders can win.

Theorem 5.5 (Supply-Limiting Mechanism for I.I.D. k-Unit Auctions). For every k-
unit auction with n ≥ 2 i.i.d. regular bidders, the supply-limiting mechanism VCG≤n/2
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gives a prior-independent max{1
2
, 1 − k

n
}-approximation to the optimal expected rev-

enue.

The proof of Theorem 5.5 using the reduction requires Theorem 2.14, the state-
ment of which we repeat in the following.

Theorem 5.6 (Generalized Bulow-Klemperer Theorem for Multi-Unit Auctions).
For every k-unit environment with i.i.d. regular bidders, the expected revenue of VCG
with k additional bidders is at least as high as the optimal expected revenue.

Now we instantiate our general reduction to use Theorem 2.14 to prove Theorem
5.5.

Proof. (of Theorem 5.5) We reinterpret the supply-limiting mechanism as follows:

1. Restriction: Remove min{n
2
, k} bidders from the environment, along with the

relevant supply.

• This results in a min{n
2
, k}-unit auction over n−min{n

2
, k} = max{n

2
, n−k}

bidders.

2. Augmentation: Add back min{n
2
, k} bidders, maintaining the supply.

• This results in a min{n
2
, k}-unit auction over n bidders.

3. VCG: Run the VCG mechanism.

By Lemma 2.15, the optimal expected revenue of the restricted environment is at
least max{1

2
, 1 − k

n
} fraction of the original environment. By applying the general-

ized Bulow-Klemperer theorem (Theorem 2.14) to the restricted environment, the
expected revenue of VCG over the augmented environment is at least as high as the
optimal expected revenue for the restricted environment. Together, it follows that
the supply-limiting mechanism gives a prior-independent max{1

2
, 1 − k

n
} approxima-

tion.
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The approximation factor in the above theorem is asymptotically tight. In fact, no
supply limiting mechanism based on limiting the supply by a fixed ratio can achieve
a better approximation factor.

Proposition 5.7 (Asymptotic Tightness). For every 0 ≤ ρ ≤ 1, there exists an n-unit
environment with n i.i.d. bidders whose values are drawn from a regular distribution
F such that VCG≤ρn gives in expectation at most (1

2
+ o(1))-fraction of the optimal

expected revenue.

Proof. First suppose that ρ < 1/2. Let the distribution F be uniform over [1, 1 + ε]

for a negligible positive ε. The optimal expected revenue is then roughly n, while
VCG with supply limit ρn can extract at most ρn(1 + ε) < n/2 in expectation.

Now suppose ρ > 1/2. Let the distribution be the left-triangle distribution with
parameter H (Example 2.7) for sufficiently large H. I.e., F (z) = z

1+z
for [0, H) and

F (H) = 1. The optimal mechanism can offer price H to every bidder, achieving an
expected revenue of H(1− H

1+H
) = H

1+H
≈ 1 from every bidder. In VCG with supply

limit ρn, with very high probability the (ρn+1)-st highest bid is concentrated around
z = 1−ρ

ρ
, the value of z such that F (z) = 1−ρ, and so we achieve an expected revenue

of roughly 1−ρ
ρ
· ρn = (1− ρ)n ≤ n

2
. One can also show that all but negligible amount

of expected revenue comes from this case.

5.4.1 A Supply-Limiting Mechanism for I.I.D. Matroid Envi-

ronments

A matroid environment is a single-dimensional environment in which the set system
(N = {1, . . . , n}, I) of bidders and feasible allocations forms a matroid (see Section
2.1.1) . Recall that the rank of a matroid is the size of its bases, and the packing
number of a matroid is its maximum number of disjoint bases.

Theorem 5.8 (Supply-Limiting Mechanism for I.I.D. Matroids). For every matroid
environment with n ≥ 2 i.i.d. regular bidders, rank r and packing number κ:

1. If κ ≥ 2 then the VCG mechanism gives a prior-independent 1
2
-approximation

to optimal expected revenue.
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2. If κ = 1 then the supply-limiting mechanism VCG≤br/2c gives a prior-
independent 1

4
-approximation to optimal expected revenue.

The proof is by instantiating the general reduction, where the restriction and
augmentation consist roughly of removing and adding back a suitable basis of bidders,
and the following Bulow-Klemperer-style theorem for i.i.d. matroid environments from
[26].

Theorem 5.9 (B-K for I.I.D. Matroid Environments). [26] For every matroid envi-
ronment with i.i.d. regular bidders, the expected revenue of VCG with an additional
matroid basis of bidders is at least as high as the optimal expected revenue.

Now we instantiate our general reduction to use Theorem 5.9 to prove Theorem
5.8.

Proof. (of Theorem 5.8) First note that if the matroid’s packing number κ is 1 then
its rank r is at least 2. We reinterpret the supply-limiting mechanism as follows:

1. Restriction: If κ = 1, first intersect the original matroid with a b r
2
c-uniform

matroid to get a new matroid environment with packing number κ′ ≥ 2.
Now that the packing number is at least 2 we can remove a basis of bidders
from the environment, where the basis is chosen randomly from a set of disjoint
bases.

2. Augmentation: Add back a basis of bidders (without changing back the supply
limit).

3. VCG: Run the VCG mechanism.

To analyze this mechanism we first upper-bound the loss due to restriction. If κ = 1,
the first step of the restriction incurs a loss of factor r/b r

2
c, and the second step incurs

a loss of factor n/(n− b r
2
c). Since by assumption n is even, the total worst-case loss

is 4. If κ ≥ 2, since at most half of the bidders are removed, the loss factor is at most
2.

The expansion step is justified by applying Theorem 5.9 to the restricted environ-
ment.
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5.5 Supply-Limiting Mechanism for Parallel Multi-

Unit Auctions

It seems restrictive to assume that in a k-unit auction, bidders’ valuation distribu-
tions are identical. One could consider a setting where every bidder has a publicly-
observable attribute j, say age bracket, which determines her (regular) distribution
Fj. In other words, the values are i.i.d. for bidders with the same attribute, and
are independent but not necessarily identically distributed for bidders with different
attributes. We aim to derive supply-limiting mechanism for such an attribute-based
setting. It turns out that it is more convenient to work with the slightly more general
class of parallel multi-unit auction environments.

5.5.1 Parallel Multi-Unit Auctions

There is a set J of non-identical items. A single-dimensional parallel multi-unit
environment consists for each item j ∈ J a kj-unit auction over nj bidders with
nj ≥ kj. Bidders for item j have values drawn i.i.d. from a regular distribution Fj.
Let n =

∑
j nj be the total number of bidders, and m =

∑
j kj be the total number

of units of items available. These auctions are related by a global supply limit ` with
l ≤ n In other words, a feasible allocation is a set of bidders containing at most
` bidders overall (a global supply limit) and at most kj bidders for item j (a local
supply limit). We say that a parallel multi-unit auction is non-singular if nj ≥ 2 for
all j.

Note that the concept of item in parallel multi-unit auctions corresponds to the
concept of attribute in the above-mentioned attribute-based setting. The difference
between the two settings is that there is no supply limit for bidders of an attribute
in the attribute-based setting.

Now consider the following supply-limiting mechanism. For every item j, impose
a local supply limit of min{kj, bnj

2
c} on the maximum number of winners of j, and

run VCG. The following states the guarantee for the case that nj’s are even; the case
of odd nj can be handled at a small loss.
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Theorem 5.10 (Supply-Limiting for Parallel Multi-Unit Auctions). For every non-
singular parallel multi-unit auction with even nj’s, the supply-limiting VCG mecha-
nism gives a prior-independent 1

4
-approximation to the optimal expected revenue.

To prove this theorem, we need to first identify the right version of Bulow-
Klemperer-style statement to work with.

5.5.2 A Bulow-Klemperer-Style Theorem

A parallel multi-unit auction is a particular case of a matroid environment, with the
underlying matroid being the intersection of a partition matroid with an `-uniform
matroid. As such, the Bulow-Klemperer-style theorem for non-i.i.d. matroid envi-
ronments by Hartline and Roughgarden [45] applies. However, this theorem requires
augmenting the environment with an additional “duplicate” bidder for every original
bidder, and adding the strong constraint that at most one of each pair of original and
duplicate can win at a time. The following theorem shows that it is sufficient to aug-
ment the environment with only kj additional bidders per item j, without imposing
strong constraint on feasibility. We defer the proof of this theorem to Section 5.5.3.

Theorem 5.11 (Bulow-Klemperer-Style Theorem for Parallel Multi-Unit Auctions).
For every parallel multi-unit auction with kj units for item j, the expected revenue
of VCG with kj additional bidders per item j is a 1

2
-approximation to the optimal

expected revenue of the original environment.

Now we use this theorem to prove Theorem 5.10.

Proof. (of Theorem 5.10) We reinterpret the supply-limiting mechanism as follows.

1. Restriction: For every item j, remove min{kj, nj

2
} bidders for item j from the

environment.

• This results in a parallel multi-unit auction with min{kj, nj

2
} units of item

j for max{nj

2
, nj − kj} bidders.
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2. Augmentation: For every item j, add back min{kj, nj

2
} bidders with item j,

but without changing the number of units of item j.

3. VCG: Run the VCG mechanism.

In the restriction step, we remove at most half of the bidders. So by Lemma 2.15,
the optimal expected revenue of the restricted environment is at least half of that
of the original environment. Applying Theorem 5.11 to the restricted environment,
the expected revenue of the VCG mechanism is at least half of the optimal expected
revenue of the restricted environment.

We remark that this supply-limiting mechanism is considerably simpler than My-
erson’s optimal mechanism for this setting, which requires computing different virtual
value functions for different distributions.

5.5.3 Proof of the Bulow-Klemperer-Style Theorem for Par-

allel Multi-Unit Auctions

To prove Theorem 5.11, we need to show that the expected revenue of VCG in the
parallel multi-unit auction after augmentation is a 1

2
-approximation to the optimal

expected revenue in the original environment. As shown by Hartline and Roughgar-
den (Lemma 4.5 of [45]), a 1

2
-approximation would follow if we prove the following

commensuration conditions :

• (C1) Ev[
∑

i∈VCG(v)\OPT(v) φi] ≥ 0, and

• (C2) Ev[
∑

i∈VCG(v)\OPT(v) pi(v)] ≥ Ev[
∑

i∈OPT(v)\VCG(v) φi]

where φi is the virtual value of bidder i, v denotes a valuation profile of both original
and augmenting bidders, and OPT(v),VCG(v) denote the winning bidders chosen
by the optimal mechanism in the original environment and VCG in the augmented
environment, respectively.

The proof of (C2) in Hartline and Roughgarden [45] can be directly applied to
our setting. However, proving (C1) in our setting turns out to be more technically
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Algorithm 5.2 An Auxiliary Allocation Procedure
Maximize welfare over all bidders and all units, with the additional constraint that
all bidders in Oj must be also chosen.

challenging. In particular, the random sets VCG(v) and OPT(v) are dependent in
more complicated ways. To handle such dependency issues, we introduce an auxiliary
allocation procedure as an intermediary for the analysis, and make careful use of the
FKG inequality along the way (see [5]). The proof relies on the fact that in our
setting, the VCG mechanism (as well as the auxiliary procedure) is a simple greedy
process, which takes the top bidders up to the local supply limit for each item, and
then sorts this set and take the best ones up to the global supply limit.

In the remainder of this section we prove (C1). This is sufficient to complete the
proof of the theorem.

Fix an item j. We let Bj contain the nj original bidders for item j as well as the
kj augmented bidders for item j. We aim to prove a stronger version of (C1) where
i ranges only over Bj. We condition the rest of the analysis on fixed values of all
bidders (including augmenting bidders) for all items except j, and fixed values of the
original bidders for item j. Now only the values of the augmenting bidders for item
j, which we denote by v′, are still random.

As the optimal mechanism does not rely on the augmenting bidders, the winning
set of OPT is now fully determined, which we denote by OPT as well. Let Oj denote
those bidders from Bj that win in OPT. To analyze the VCG mechanism, we consider
the auxiliary procedure in Algorithm 5.2.

Let T (v′) be the bidders for item j that win in this procedure. (So Oj ⊆ T (v′) ⊆
Bj.) Let VCGj(v

′) be the bidders for item j that win in VCG. The following claim
relates the auxiliary procedure to VCG.

Claim 5.12. For all values v′ of augmenting bidders for item j, VCGj(v
′)\T (v′) always

have nonnegative virtual values.

Proof. Compare the auxiliary procedure to VCG. In VCG, we have the additional
freedom of replacing bidders in Oj by others. By a property of the greedy process of
VCG, each replacement will be either from Bj with even higher values and therefore
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higher virtual values, or from bidders for other items. As all bidders in Oj already
had nonnegative virtual values, the replacements that come from Bj (i.e., bidders in
VCGj(v

′)\T (v′)) will also have nonnegative virtual values.

The following claim relates the auxiliary procedure to OPT.

Claim 5.13. T (v′)\Oj have nonnegative total virtual value in expectation over all
values v′ of augmented bidders for item j.

Proof. Let ψi(v′) for i = 1, . . . , kj be the i-th highest virtual value (or value) of a
bidder in Bj\Oj. Let 0-1 variable 1i(v

′) indicate whether the i-th highest bidder
in Bj\Oj wins in the auxiliary procedure, and let pi = Ev′ [1i(v

′)] be the corre-
sponding probability. It follows that the total virtual value of bidders in T (v′)\Oj is∑kj

i=1 Ev′ [ψi(v
′) · 1i(v′)].

By the greedy nature of the auxiliary procedure, one can verify that if the i-th
highest bidder in Bj\Oj wins in the auxiliary procedure, and some bidders in Bj\Oj

increase their values, then the i-th highest bidder in Bj\Oj still wins. Formally, for
two valuation profiles v′ and v′′ of the augmenting bidders for item j with v′i ≤ v′′i for
all i, we have 1i(v

′) ≤ 1i(v
′′). This positive correlation allows us to apply the FKG

inequality [5], and we have:

kj∑
i=1

Ev′ [ψi(v
′) · 1i(v′)] ≥

kj∑
i=1

Ev′ [ψi(v
′)] · Ev′ [1i(v)]

=

kj∑
i=1

Ev′ [ψi(v
′)] · pi

=

kj∑
i=1

(
Ev′ [

i∑
i′=1

ψi′(v
′)] · (pi − pi+1)

)

where we let pk+1 = 0.
It is easy to see that pi is decreasing in i. Therefore it suffices to prove that∑i
i′=1 Ev′ [ψi′(v

′)] ≥ 0 for all i. Fixing i, this is the total virtual value from the top i
bidders from Bj\Oj. The expected total virtual value of the first i augmented bidders
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(sorted by identity) for item j exactly equals 0. It follows that ψ1, . . . , ψi as the top
i virtual values can only have a nonnegative expected total sum.

Now by Claims 5.12 and 5.13, Ev′ [
∑

i∈VCGj(v′)\Oj
φi] ≥ 0. Summing over all v′, all

values of bidders for other items, and all items j, we have Ev[
∑

i∈VCG(v)\OPT(v) φi] ≥ 0,
which verifies condition (C1).

5.6 I.I.D. Matching Environments: Overview of Re-

sults

5.6.1 Supply-Limiting Mechanisms

In this section we present our main result of this chapter— a supply-limiting mech-
anism for i.i.d. matching environments. More precisely, we present three alternative
supply-limiting mechanisms, all VCG-based, with different approximation factors de-
pending on the number of bidders n and number of items m of the i.i.d. matching
environment. The relation between the number of bidders n and total number of
items m in the environment at hand determines which supply-limiting mechanism is
most suitable.

We denote the revenue from the optimal mechanism for n bidders by OPT(n), and
the revenue from the supply-limiting VCG mechanism for n bidders by VCG≤`(n),
sometimes omitting ` from the notation when l is not binding, i.e., ` ≥ min{n,m}.
Note that OPT(n) and VCG≤`(n) are random variables over the sample space of
bidder valuation profiles v. All expectations below are over v.

Again we only state theorems for n that is a multiple of 2 (or 3 if appropriate) to
keep the statements clean. The case of general n can be handled at a small loss.

Theorem 5.14. For every matching environment with n ≥ 2 i.i.d. regular bidders
and m ≤ n/2 items, where n is even, E[VCG(n)] ≥ (1 − m

n
) · E[OPT(n)]. Here

1− m
n
≥ 1

2
.

Theorem 5.15. For every matching environment with n ≥ 2 i.i.d. regular bidders
and m ≥ n/2 items, where n is even, E[VCG≤n/2(n)] ≥ n

4m
E[OPT(n)].
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Theorem 5.16. For every matching environment with n ≥ 3 i.i.d. regular bidders
and m items, where n is a multiple of 3, E[VCG≤n/3(n)] ≥ 1

27
E[OPT(n)].

Intuitively, achieving good approximation guarantees becomes more difficult as the
number of items grows relative to the number of bidders, since the natural competition
among the bidders in the environment is dispersed across different items. Accordingly,
when number of items is less than half of the number of bidders, we show that simply
applying VCG achieves a 1

2
-approximation to the optimal expected revenue (Theorem

5.14). When the number of items is more than half of the number of bidders but
still proportional to it, applying VCG while artificially limiting the supply to half of
the number of bidders achieves a n

4m
-approximation, in particular a 1

4
-approximation

when m = n (Theorem 5.15). Finally, when the number of items is possibly much
larger than the number of bidders, limiting the supply still achieves a constant-factor
approximation but with a larger constant. We find that setting the supply limit to
a third of the number of bidders guarantees a 1

27
-approximation (Theorem 5.16). We

believe this approximation factor can be further improved, and leave this as an open
problem.

We reduce proving the above theorems to proving appropriate Bulow-Klemperer-
style theorems. In Section 5.6.2 we state these theorems and show how the main
theorems are implied by them via the general reduction. The proofs of the Bulow-
Klemperer-style theorems themselves are the main technical contribution, and appear
in Sections 5.7, 5.8, and 5.9, respectively.

Finally, in Section 5.10, we extend the main results to a multi-unit matching
environment, where every item can have multiple units.

5.6.2 Reduction to Bulow-Klemperer-Style Theorems

Our proof approach is based on the general reduction of proving prior-independent
approximations to proving Bulow-Klemperer-style theorems. In particular, we re-
duce proving Theorems 5.14, 5.15, and 5.16 to the following corresponding Bulow-
Klemperer-style theorems respectively. We defer the proof of these Bulow-Klemperer-
style theorems to later sections.



CHAPTER 5. SUPPLY-LIMITING MECHANISMS 90

Theorem 5.17. For every matching environment with n i.i.d. regular bidders and m
items, E[VCG(n+m)] ≥ E[OPT(n)].

Now we show that this theorem implies Theorem 5.14.

Proof. (of Theorem 5.14) We need to show E[VCG(n)] ≥ (1− m
n

) · E[OPT(n)] when
m ≤ n/2. We reinterpret the VCG mechanism as follows.

1. Restriction: Remove m bidders from the environment.

• This results in a matching environment with n−m bidders and m items.

2. Augmentation: Add back m bidders.

• This results in a matching environment with n bidders and m items.

3. VCG: Run the VCG mechanism.

By monotonicity and Lemma 2.15, restricting the environment does not hurt the
optimal expected revenue too much, i.e., E[OPT(n − m)] ≥ (1 − m

n
) · E[OPT(n)].

Applying Theorem 5.17 to the restricted environment with n − m bidders and m

items, gives E[VCG(n)] ≥ E[OPT(n−m)] completes the proof.

Theorem 5.18. For every matching environment with n i.i.d. regular bidders and
m ≥ n items, E[VCG≤n(2n)] ≥ n

m
E[OPT(n)].

Now we show that this theorem implies Theorem 5.15.

Proof. (of Theorem 5.15) We need to show E[VCG≤n/2(n)] ≥ n
4m

E[OPT(n)] when
m ≥ n/2. We reinterpret the supply-limiting mechanism as follows.

1. Restriction: Remove n/2 bidders from the environment.

• This results in a matching environment with n/2 bidders and m items.

2. Augmentation: Add back n/2 bidders without changing supply. Now at most
n
2
bidders can win.
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• This results in a matching environment with n bidders, m items, and a
supply limit of n

2
.

3. VCG: Run the VCG mechanism.

As above, the proof is by the inequality chain E[VCG≤n/2(n)] ≥ n
2m

E[OPT(n/2)] ≥
n

4m
E[OPT(n)], where the second inequality is by Lemma 2.15, and the first inequality

is by applying Theorem 5.18 to the restricted environment.

Theorem 5.19. For every matching environment with n i.i.d. regular bidders and m
items, E[VCG≤n(3n)] ≥ 1

9
E[OPT(n)].

Now we show that this theorem implies Theorem 5.16.

Proof. (of Theorem 5.16) We need to show E[VCG≤n/3(n)] ≥ 1
27
E[OPT(n)]. We

reinterpret the supply-limiting mechanisms as follows.

1. Restriction: Remove 2
3
n bidders from the environment.

• This results in a matching environment with 1
3
n bidders and m items.

2. Augmentation: Add back 2
3
n bidders. Now at most n

3
bidders can win. (This

constraint can be not binding if m is small.)

• This results in a matching environment with n biders, m items, and a
supply limit of n

3
.

3. VCG: Run the VCG mechanism.

As above, the proof is by the inequality chain E[VCG≤n/3(n)] ≥ 1
9
E[OPT(n/3)] ≥

1
27
E[OPT(n)], where the second inequality is by Lemma 2.15, and the first inequality

is by applying Theorem 5.19 to the restricted environment.

The first of the above Bulow-Klemperer-style theorems states that for matching
environments with m items, the expected revenue of VCG with m additional bidders
is at least as high as the optimal expected revenue. This generalizes the original
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Bulow-Klemperer theorem to the more complex multi-dimensional matching setting.
If m � n however, the required resource augmentation — adding m bidders when
originally there are only n — is substantial, which will cause our reduction to give
weak bounds.

Our second and third Bulow-Klemperer-style theorems address this issue by
adding only O(n) bidders, with an additional supply limit of n. Theorem 5.18 pro-
vides a good approximation factor when m is a small multiple of n. Theorem 5.19
guarantees a 1

9
-approximation for any values of n,m.

5.7 BK-Style Theorem for Matching with m More

Bidders

In this section we prove Theorem 5.17, i.e., E[VCG(n + m)] ≥ E[OPT(n)]. In Sec-
tion 5.7.1 we identify an upper bound on the optimal expected revenue in the original
environment, and a lower bound on the revenue of the VCG mechanism in the aug-
mented environment. The advantage of this step is that these bounds are relatively
simple to analyze and are already similar in form, though not identical. In Sec-
tion 5.7.2 we carefully relate the two bounds, thus establishing Theorem 5.17.

5.7.1 Basic Upper and Lower Bounds

Let Vicj(n+ 1) be the revenue from selling item j to n+ 1 i.i.d. bidders with value-
distribution Fj using the Vickrey (second-price) auction. We use the concept of
representative environment to show that the optimal expected revenue from selling
all items to n bidders in an i.i.d. matching environment is upper-bounded by the
expected revenue from selling each item to a separate group of n+1 single-dimensional
bidders.

Claim 5.20 (Upper Bound on Optimal Expected Revenue). For every matching envi-
ronment with n i.i.d. regular bidders, E[OPT(n)] ≤

∑
j E[Vicj(n+ 1)].
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Proof. We leverage the notion of representative environments of Chawla et al. [19]
(see Section 5.2) to prove the claim.

Given the matching environment, consider the corresponding complete bipartite
graph with bidders on one side and items on the other, and the bidders’ values for
items drawn from distributions {Fj}j as edge weights; recall that feasible alloca-
tions correspond to matchings. By Lemma 5.3, the optimal expected revenue in
the matching environment is upper-bounded by the optimal expected revenue in its
single-dimensional counterpart, the corresponding representative environment.

We now relax the feasibility constraints, by which we only increase the optimal
expected revenue. We define a new environment in which feasible allocations are
all subsets of edges such that at most one edge is incident to an item-node (but
unlike a matching, multiple edges can be incident to a bidder-node). Observe that
the new environment is equivalent in terms of revenue to a collection of m single-
item auctions, where in the j-th auction item j is auctioned to n single-dimensional
bidders whose values are drawn i.i.d. from the regular distribution Fj. By the original
Bulow-Klemperer theorem (Theorem 2.14), the optimal expected revenue from the j-
th auction is upper-bounded by E[Vicj(n+ 1)]. Summing up over all items completes
the proof.

The revenue from the VCG mechanism is the sum of VCG payments for allocated
items. For an allocated item j, we lower-bound the VCG payment for the winner of
item j. (In the current case of m ≤ n, every item is allocated. But this is not true if
m > n which is needed in next sections.)

Claim 5.21 (Lower Bound on VCG Revenue). For every matching environment, the
VCG payment for an allocated item j is at least the value of any unallocated bidder
for j.

Proof. If bidder i wins item j, then the VCG payment for item j is equal to the
externality that i imposes on the rest of the bidders by winning j. Since i prevents
any unallocated bidder from getting item j, the payment is at least the unallocated
bidder’s value for j.
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Algorithm 5.3 Selling Item j by Deferred Allocation
Given a matching environment with current supply limit l: (l = min{m,n} if no
explicit supply limit was set)

1. Find a welfare-maximizing feasible allocation (a maximum weighted matching)
of all items other than item j with a supply limit of l − 1 to a subset of the
bidders.
Let U be the set of n+ 1 bidders who are not allocated in this allocation.

2. Run the Vickrey auction to sell item j to bidder set U .

In our matching context, the upper and lower bounds above turn out to share a
similar form. On one hand, by definition of the Vickrey auction, the upper bound
E[Vicj(n+ 1)] on the expected revenue from separately auctioning item j is equal to
the second-highest value for item j among n+ 1 bidders with values for item j drawn
independently from Fj. On the other hand, the lower bound on the VCG payment for
item j in the augmented environment is equal to the highest value for item j among
n unallocated bidders with values drawn independently from Fj. We are using here
the fact that since the augmented environment includes m more bidders, all items are
allocated and exactly n out of n+m bidders are unallocated.

From this it may appear as if we have already shown that the lower bound exceeds
the upper bound. However, a dependency issue arises — conditioned on the event
that a bidder in the augmented environment is unallocated by VCG, her value for
item j is no longer a random sample from Fj. We address this issue in the next
subsection by introducing a deferred allocation selling procedure.

5.7.2 Relating the Upper and Lower Bounds via Deferred Al-

location

Algorithm 5.3 describes a deferred allocation procedure for selling item j.
In Figure 5.7.1, we depict an example of deferred allocation along with Vickrey

auction and VCG.
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Figure 5.7.1: Relating Bounds via Deferred Allocation with n = m = j = 2

We now show how deferred allocation helps us get around this dependency issue.
Consider the revenue from selling item j to bidder set U by the deferred allocation
procedure described in Algorithm 5.3. We use this revenue to relate the upper and
lower bounds found in the previous section.

Claim 5.22 (Relating to Upper Bound). The revenue from selling item j by the de-
ferred allocation procedure for item j is equal in expectation to E[Vicj(n+ 1)].

Proof. Observe that the revenue from selling item j to bidder set U by the Vickrey
auction is the second-highest value of a bidder in U for j. Since we exclude item j

in step (1) of the deferred allocation procedure and allocate it only in step (2), the
allocation in step (1) does not depend on the bidders’ values for j. Therefore, the
values of the unallocated bidders in U for item j are still independent random samples
from Fj. The expected second-highest among n+ 1 values drawn independently from
Fj is equal to E[Vicj(n+ 1)].

To relate this to the lower bound in Claim 5.21, we need the following stability
property.

Claim 5.23 (Stability). For every value profile of the augmented matching environ-
ment, the set of bidders left unallocated by VCG is U less at most one bidder.

Proof. Given the augmented matching environment, compare VCG and the deferred
allocation procedure, both calculate maximum bipartite weighted matchings between
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bidders and items. The difference is that the sizes of the two matchings differ by
at most one, and the item set differs by at most one node, item j. The symmetric
difference of the two matchings is either an empty set, or a single alternating path2.
It follows that the bidder sets matched in the two matchings differ by at most one
node too, and our claim follows.

Using this claim we can lower-bound the VCG payment for item j in the aug-
mented environment.

Claim 5.24 (Relating to Lower Bound). For every value profile of the augmented
matching environment, the VCG payment for item j is at least the revenue from
selling item j by deferred allocation.

Proof. The revenue from selling item j by deferred allocation is the second-highest
value of a bidder in U for j. Let i1, i2 be the two bidders in U who value item j

the most. By definition, these bidders are left unallocated by the deferred allocation
procedure, and by the previous claim, one of them (say i1) is also unallocated by the
VCG mechanism. Recall that an unallocated bidder’s value for item j gives a lower
bound on the VCG payment for j (Claim 5.21). So the VCG payment for j is at
least vi1,j, which in turn is at least the second-highest value of a bidder in U for item
j.

Putting everything together, we can now complete the proof of the Bulow-
Klemperer-style theorem.

Proof. (of Theorem 5.17) We need to show that E[VCG(n + m)] ≥ E[OPT(n)]. By
Claim 5.24, the VCG payment for item j in the augmented environment is at least
the revenue from selling item j by deferred allocation, which by Claim 5.22 is equal
in expectation to E[Vicj(n+ 1)]. Summing up over all items, the total expected VCG
revenue in the augmented environment is at least

∑
j E[Vicj(n + 1)], and by Claim

5.20 this upper-bounds E[OPT(n)]

2We assume there is a unique maximum-weighted matching. This holds with probability 1 as all
distributions have smooth density functions.
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5.8 Weak BK-Style Theorem for Matching with n

More Bidders

In this section we prove Theorem 5.18, i.e., E[VCG≤n(2n)] ≥ n
m
E[OPT(n)]. The proof

is similar to that of Theorem 5.17. Here we highlight the necessary changes.
The upper bound on the optimal expected revenue remains

∑
j E[Vicj(n + 1)]

(Claim 5.20). This is not a very strong upper bound. A stronger upper bound will be
used in Section 5.9 to achieve stronger bounds. As for the lower bound, it is no longer
the case that in the augmented environment all items are allocated, and so we make
use of a generalization of Claim 5.21 — the VCG payment for item j is lower-bounded
not only by the value of any unallocated bidder for j itself, but also by the value of
any unallocated bidder for any unallocated item. We call the highest of the latter
among all unallocated bidders and items the global lower bound on VCG payments,
and denote it by G. Note that since VCG is now applied with a supply limit of n,
exactly n out of the 2n bidders in the augmented environment are unallocated.

We use the same deferred allocation selling procedure in Algorithm 5.3, and Claims
5.22, 5.23, and 5.24 still hold. For Theorem 5.17, every item is allocated, and these
claims allow us to do a per-item charging argument, i.e., to charge the upper bound
for each item j to the lower bound for item j, for every item j. However, for Theorem
5.18, we need an additional charging argument, since only n out of m items are
allocated by VCG.

1. If item j is allocated by VCG, then as above the VCG payment for it is at least
the revenue from selling j by deferred allocation.

2. If item j is not allocated by VCG, then the VCG payment for any allocated
item j′ 6= j is at least the global lower bound G, and so is at least the revenue
from selling j by deferred allocation (cf. Claim 5.24).

By the above, we can charge our upper bound E[Vicj(n + 1)], which equals to the
total expected revenue from selling all m items by deferred allocation, to the VCG
payments for the n allocated items, thus obtaining an approximation factor of n

m
.
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5.9 BK-Style Theorem for Matching with O(n) More

Bidders

In this section we prove Theorem 5.19, i.e., E[VCG≤n(3n)] ≥ 1
9
E[OPT(n)].

5.9.1 Notations and Definitions

We first present several additional notations and definitions needed for the proof.

Environments Let Env be a matching environment with n i.i.d. regular bidders
and m items, and let Env′ be the augmented matching environment with 2n ad-
ditional bidders and supply limit n. Let Envrep be the representative environment
corresponding to Env. Environment Ênv is obtained from Envrep by adding one addi-
tional bidder per item, and replacing the unit-demand constraint by the more relaxed
constraint of limiting the supply to 2n items that can be allocated in total.3 So Ênv

is a parallel multi-unit auction where there are n + 1 bidders for one copy of each
item and global supply limit 2n.

Valuation profiles V,v Let V = {V 1, . . . , V m} be a collection of m sets, each
containing n+ 1 random values. The values in set V j are i.i.d. samples from Fj. The
collection V corresponds to a valuation profile in environment Ênv up to naming of
the bidders, where V j contains the values of the bidders interested in item j. Let v
be a vector of 3nm random values. Values v1,j, . . . , v3n,j are i.i.d. samples from Fj.
The vector v corresponds to a valuation profile in environment Env′, where vi,j is the
value of bidder i for item j.

Random variables over V Over the sample space of V we define the following.
For every j, random variables Hj, Sj are the highest and second-highest values for
item j. Random variable N is the (2n + 1)-highest among {H1, . . . , Hm} if m > 2n

3Note there is deliberate slackness in this relaxation — to obtain a matroid environment it would
have been sufficient to replace the unit-demand constraint by a supply limit of n; by further relaxing
the supply limit to 2n we aid later analysis.
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and 0 otherwise. Random set A contains every item j such that Hj is within the
min{2n,m} highest among {H1, . . . , Hm}. Let a1, . . . , a|A| denote the items in A

ordered by their Hj value from high to low. Observe that if VCG runs on Ênv with
valuation profile V , the set of min{2n,m} allocated items is equal to A.

Random variables over v Over the sample space of v we define the following.
Consider running VCG≤n on Env′ with valuation profile v. Random set B contains
every item j such that j is allocated by VCG≤n. Random variable G (for global) is
the highest value of an unallocated bidder for an unallocated item, and for every j,
random variable Lj (for local) is the highest value of an unallocated bidder for item
j.

Bounds

Claim 5.25 (Upper Bound on Optimal Expected Revenue). E[OPT(Env)] ≤
2E[VCG(Ênv)], i.e., the expected revenue of the optimal mechanism for Env is upper
bounded by twice the expected revenue of the VCG mechanism for Ênv.

Proof. We know that E[OPT(Env)] ≤ E[OPT(Envrep)] (Lemma 5.3). Relaxing the
unit-demand constraint in Envrep while maintaining a supply limit of 2n only increases
the optimal revenue. The result is a matroid environment (a parallel 1-unit environ-
ment with n bidders per item and global supply limit 2n, to be precise), to which
we add one bidder per item and apply the Bulow-Klemperer-style result in Theorem
5.11,4 stating that the expected revenue of VCG on the resulting environment Ênv is
a 1

2
-approximation to the optimal expected revenue. This completes the proof.

Claim 5.26 (Global and Local Upper Bounds). Given a valuation profile V for en-
vironment Ênv, the VCG payment for every allocated item j ∈ A is the maximum
among N (global upper bound) and Sj (local upper bound).

4We can’t use the classic Bulow-Klemperer theorem here since representative bidders who are
interested in different items are not i.i.d. Alternatively with some modification we could have used
the Bulow-Klemperer theorem of Hartline and Roughgarden for non-i.i.d. bidders [45].
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Proof. The VCG revenue from every allocated item j is upper bounded by the highest
value for any unallocated item, and by the second price for j among the n+1 bidders
interested in j. Due to the supply limit of 2n in Ênv and by definitions of N and Sj,
we can write this as max{N,Sj}.

Claim 5.27 (Global and Local Lower Bounds). Given a valuation profile v for envi-
ronment Env′, the VCG payment of the supply-limiting VCG≤n mechanism for every
allocated item j ∈ B is at least the maximum among G (global lower bound) and Lj
(local lower bound).

Proof. The claim is based on VCG payments reflecting externalities. Say bidder i
wins item j, then if i were absent from the auction, a currently unallocated bidder
could have won a currently unallocated item, without violating the supply limit of n
and without interfering with the rest of the current allocation. So by definition of G,
it gives a lower bound on bidder i’s payment for item j. Similarly, if bidder i were
absent from the auction, then any currently unallocated bidder could have won item
j, and Lj is also a lower bound on i’s payment for j.

5.9.2 Relating Upper- and Lower- Bounds

Next we state a main lemma.

Lemma 5.28 (Main). E[VCG≤n(Env′)] ≥ 2
9
E[VCG(Ênv)].

We then use this lemma to complete the proof of the Bulow-Klemperer-style the-
orem for the general n,m case.

The first step in relating the bounds is to fix the valuation profile V for envi-
ronment Ênv. This completely determines the outcome of the VCG mechanism over
Ênv, and fixes the set of allocated items A = {a1, . . . , a|A|}, the global upper bound
N , and the local upper bound Sj for every item j.

Now consider a valuation profile for environment Env′ that’s compatible with V .
For every item j, n+ 1 out of the 3n values for j are fixed, but the rest of the values
as well as the attribution of values to bidders remain random. We denote such a
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valuation profile by v(V ). From now on, our probabilistic arguments are all over the
remaining randomness in v(V ).

Relating the Global Bounds

Claim 5.29. Pr[G ≥ N ] ≥ 2
3
.

Corollary 5.30. Since G is non-negative, E[G] ≥ 2
3
N .

Proof. (of Claim 5.29)
If m ≤ 2n, then by definition N = 0 and the claim holds trivially. Assume from

now on m > 2n.
Recall that A contains the 2n most-valued items according to the fixed valuation

profile V . By definition of N , it is upper-bounded by the highest value in V for any
item in A. Clearly it is also upper-bounded by the highest value in v(V ) for any item
in A. It remains to relate G to this bound.

In environment Env′ with valuation profile v(V ), consider the random subset of
bidders that contains, for every j ∈ A, the bidder with the highest value for j among
all 3n bidders. Denote this random subset of bidders by A′. Notice that for every
j, the bidder with the highest value for j is distributed uniformly at random among
the 3n bidders. Therefore, A′ corresponds to the random subset of bins chosen by
throwing 2n balls into 3n bins uniformly at random. The following claim formalizes
the intuition that the balls are likely to occupy many of the bins.

Claim 5.31. Pr[|A′| ≤ n] ≤ 1
3
.

Proof. We upper bound the probability that 2n balls thrown uniformly at random
into 3n bins all land in a subset of at most n bins. The following is a loose upper
bound:

(
3n
n

)
n2n/(3n)2n, where

(
3n
n

)
is the number of subsets of n out of 3n bins, n2n

is the number of possibilities to arrange 2n balls in n bins, and (3n)2n is the number
of possibilities to arrange 2n balls in 3n bins (this upper bound is not tight due to
over-counting in the numerator). Simplifying we get the expression

(
3n
n

)
/32n, which

is at most 1
3
for every n.
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We remark that as n→∞, the cardinality of A′ becomes concentrated around its
expectation, and Pr[|A′| ≤ n]→ 0.

In the likely event that |A′| > n, there is at least one bidder i ∈ A′ that is
unallocated by the supply-limiting mechanism VCG≤n due to its supply limit. Let j
be an item in A such that i has the highest value for j among all bidders. Then j is
necessarily unallocated by VCG≤n, as otherwise the VCG allocation is not welfare-
maximizing. We conclude that if |A′| > n then vi,j is the value of an unallocated
bidder for an unallocated item and so G ≥ vi,j. Since vi,j ≥ N , the probability that
G ≥ N is at least 2

3
, as required.

Relating the Local Upper Bound to the Lower Bounds

For every item j ∈ A allocated by VCG in Ênv, we can relate between the local upper
bound Sj and the lower bounds G and Lj provided that item j has the following
property.

Definition 5.32 (Profitable Item). Given a valuation profile v(V ) for environment
Env′, item j is profitable if when j is removed from Env′ and VCG≤n−1 is applied,
the two bidders with the highest and second-highest values for j are unallocated.

When item j is profitable we can show the following relation among the relevant
bounds, depending on whether j is allocated by VCG≤n on Env′ and so j ∈ B, or
not.

Claim 5.33. For every profitable item j, if j ∈ B then Lj ≥ Sj, otherwise G ≥ Sj.

Furthermore we argue that an item is profitable with high probability.

Claim 5.34. For every item j, Pr[j is good] ≥ 4
9
.

We now begin to prove Claim 5.33, which is based on the claim that one of the
two bidders in Env′ with highest and second-highest values for a profitable item j

remains unallocated by VCG≤n. This follows from the definition of a profitable item
together with a stability property of VCG allocations in a matching environment, by
which the allocations of VCG≤n and VCG≤n−1 without item j are almost the same.
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Proof. (of Claim 5.33) Let U be the set of bidders who are left unallocated by the
deferred allocation procedure of removing item j from Env′ and running VCG≤n−1.
Since j is profitable, U includes the two bidders with highest and second-highest
values Hj, Sj for j. The set of bidders who remain unallocated by VCG≤n is either
exactly U or U with one bidder removed, by the same alternating path argument as
in Claim 5.23. We conclude that there is an unallocated bidder whose value for j is
at least Sj. By definition of G and Lj as the highest value of an unallocated bidder
for an unallocated item and for item j, respectively, depending on whether item j is
allocated either G ≥ Sj or Lj ≥ Sj, as required.

To show that item j is profitable with constant probability for every j, we use a
deferred allocation argument and utilize the ratio between the number of bidders in
Env′ and the supply limit of VCG≤n.

Proof. (of Claim 5.34) Running VCG≤n−1 on environment Env′ after removing item
j leaves at least 2n+ 1 out of the 3n bidders unallocated, so |U | ≥ 2n+ 1. Since item
j does not take part in this deferred allocation procedure, its values are distributed
uniformly among all bidders, and the probability that a certain value is attributed
to a bidder in U is |U |/3n ≥ 2/3. The probability that the two bidders with highest
and second-highest values for item j are both in U is therefore at least 4

9
.

5.9.3 Putting It All Together

Using the relations we established among the various bounds, we are now ready to
prove our main lemma and theorem. We assume for simplicity that m > n (otherwise
the proof reduces to that of Theorem 5.17). Our proof is based on a subtle charging
argument – we need to charge the payments for items a1, . . . , a|A| in A, which were
allocated by VCG on Ênv, against the payments for the n items in B, which were
allocated by VCG≤n on Env′. We use a somewhat different argument for items in
A ∩B and in A \B.
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Proof. (of Lemma 5.28 (Main Lemma)) For every k ∈ [2n], we define an auxiliary
random variable Xk as follows.

if k ≤ |A| and ak ∈ B then Xk = max{G,Lak}
if k ≤ |A| and ak /∈ B then Xk = G

otherwise Xk = 0

We also define a 2-to-1 mapping β from the set {1, . . . , 2n} to the set of n items B,
such that for every k ≤ |A|, if ak ∈ B then β(k) = ak. We now show that Xk serves
as an intermediary between the upper and lower bounds.

For the lower bounds, observe that Xk ≤ max{G,Lβ(k)}, since if k ≤ |A| and
ak ∈ B then Xk = max{G,Lak} = max{G,Lβ(k)}, and the other cases clearly hold as
well. Summing up over k we get

2n∑
k=1

Xk ≤
2n∑
k=1

max{G,Lβ(k)} ≤ 2
∑
j∈B

max{G,Lj} ≤ 2 VCG≤n(Env′) (5.9.1)

where the second inequality uses the property that β is a 2-to-1 mapping.
For the upper bounds, let k ≤ |A|. Since Xk ≥ G we know that E[Xk] ≥ E[G] ≥

2
3
N (Lemma 5.29). Now combining the probability that ak is a profitable item (Claim

5.34), with the fact that if ak is profitable then Xk ≥ Sak (Lemma 5.33), we also have
that E[Xk] ≥ 4

9
Sak . Summing up over k ≤ |A| we get

|A|∑
k=1

E[Xk] ≥
4

9

|A|∑
k=1

max{N,Sak} =
4

9
E[VCG(Ênv)]. (5.9.2)

Combining Inequalities 5.9.1 and 5.9.2 completes the proof that E[VCG≤n(Env′)] ≥
2
9
E[VCG(Ênv)].

Proof. (of Theorem 5.19) The theorem follows directly from the main lemma and
from the bounds we established (Lemma 5.25).
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5.10 Extension to Multi-Unit Matching Environ-

ments

A multi-unit matching environment is a multi-dimensional matching environment
with kj units of item j and a total of m =

∑
j kj units. We can also impose an

additional global supply limit ` ≤ m on the total number of allocated units.
Two out of the three supply-limiting mechanisms in Section 5.6 for i.i.d. matching

environments apply directly to i.i.d. multi-unit matching as well. In fact, Theorems
5.14 and 5.15 hold without change for multiple units. Recall that Theorem 5.16
gives a constant approximation guarantee in the challenging case where the number
of items m is much larger than the number of bidders n. In order to generalize this
theorem to multi-unit matching, we introduce a slightly more general supply-limiting
mechanism. Let VCG≤`,≤`j be the VCG mechanism with a global supply limit ` on
the total number of allocated units, and local supply limits {`j} on the number of
allocated units of every item j. We then have the following multi-unit version of
Theorem 5.16.

Theorem 5.35 ( 1
27
-Approximation for Multiple Units). For every multi-unit match-

ing environment with n ≥ 3 i.i.d. regular bidders, m total units and kj units per item
j, where n is a multiple of 3, E[VCG≤n/3,≤dkj/2e(n)] ≥ 1

27
E[OPT(n)].

We prove this theorem via our general reduction, using the following multi-unit
version of the Bulow-Klemperer-style result in Theorem 5.19.

Theorem 5.36 (1
9
-Approximate B-K for Multiple Units). For every multi-unit

matching environment with n i.i.d. regular bidders, m total units and kj units per
item j, E[VCG≤n,≤dkj/2e(3n)] ≥ 1

9
· E[OPT(n)].

In this section we prove Theorem 5.36, the multi-unit version of Theorem 5.19.
In particular we show that:

E[VCG≤n,≤dkj/2e(3n)] ≥ 1

9
· E[OPT(n)].



CHAPTER 5. SUPPLY-LIMITING MECHANISMS 106

The proof is similar to that of Theorem 5.19. One main novel component is an
application of the Bulow-Klemperer-Style theorem for parallel multi-unit auctions
(Theorem 5.11). In what follows we highlight the remaining differences from the
proof of Theorem 5.19.

For simplicity, we assume throughout that m ≥ 2n (otherwise, one can always
use the Bulow-Klemperer-style results in Theorems 5.17 and 5.18 instead of Theorem
5.36). This assumption simplifies the analysis since it guarantees that despite the local
supply limits, there are enough units such that VCG≤n,≤dkj/2e allocates to exactly n
bidders. We also assume for simplicity that kj < n for every j (the case where kj = n

is only simpler).

5.10.1 Extending the Weak Bound

The upper bound on the optimal expected revenue remains
∑

j E[Vicj(n+kj)] (Lemma
5.20). For the lower bound we need the stronger claim in Claim 5.27, since it is no
longer the case that in the augmented environment all units can be allocated. The
claim is that the VCG payment for item j is lower-bounded by the value of any
unallocated bidder for either item j itself (the local lower bound, denoted by Lj), or
for any unallocated item (the global lower bound, denoted by G). Note that due to
the supply limit, exactly n out of 2n bidders are allocated.

Step (1) in the deferred allocation procedure (Algorithm 5.3) is now: Find a
welfare-maximizing allocation (i.e., a maximum matching) without item j and under
the global supply limit (n−kj). Let U be the set of n+kj unallocated bidders. Claim
5.22 holds. We also need an observation that the set of bidders left unallocated by
VCG with supply limit n in the augmented environment is U with at most kj bidders
removed. Claim 5.24 holds for items j that are allocated by VCG≤n in the augmented
environment.

Putting everything together we use the following charging argument.

• If the VCG mechanism with supply limit n allocates item j, then the payment
for j is at least Lj and so in expectation is at least 1

kj
E[Vicj(n+ kj)].
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• If the VCG mechanism with supply limit n allocates item j′ but not item j, then
the payment for j′ is at least G and so in expectation is at least 1

kj
E[Vicj(n+kj)].

Thus we can charge all m total units against the n allocated units, obtaining an
approximation factor of n

m
.

5.10.2 Upper and Lower Bounds

We use the same notation as in the proof of Theorem 5.19, but in some cases to
denote somewhat different objects. We now state the differences.

Environments Let Env be a multi-unit matching environment with n i.i.d. regular
bidders, m ≥ 2n total units, and kj ≤ n units per item j. Let Env′,Envrep be
the augmented and representative environments, respectively. Environment Ênv is
obtained from Envrep by adding n additional bidders per item, and replacing the unit-
demand constraint by a supply limit of 2n. So Ênv is a kj-unit, m-item environment
with 2n bidders per item and supply limit 2n.

Valuation profiles V,v Let V be a collection of sets Vj, each containing 2n i.i.d.
samples from Fj. There is no change in v.

Random variables over V Let Sj be the (kj + 1)-th-highest value for item j. If
m > 2n, the random variable N is the (2n+ 1)-st-highest among a set containing the
kj highest values for every item j. Otherwise, N = 0. Let A be a multiset containing
the 2n items (with repetitions) with the highest values among a set containing the
kj highest values for every item j. Let a1, . . . , a2n denote the items in A ordered by
their value from high to low. Observe that if VCG runs on Ênv with valuation profile
V , the set of 2n allocated items is equal to A.

Random variables over v Consider running VCG≤n,≤dkj/2e on Env′ with valuation
profile v. Let B be a multiset containing a copy of j for every allocated unit of j.
Random variable G is the highest value of an unallocated bidder for an unallocated
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unit, and for every j, random variable Lj is the highest value of an unallocated bidder
for item j.

Bounds

Bounds do not change. Note that the proof of the upper bound on the optimal
expected revenue critically uses the single-dimensional Bulow-Klemperer-style result
in Theorem 5.11 to justify the augmentation of the environment by adding n ≥ kj

bidders per item, with no restrictions of the form "at most one of every pair of
duplicates can be allocated".

5.10.3 Relating the Upper and Lower Bounds

Relating the Global Bounds

Claim 5.37. Pr[G ≥ N ] ≥ 2
3
.

Corollary 5.38. Since G is non-negative, E[G] ≥ 2
3
N .

Proof. (of Claim 5.37)
In environment Env′ with random valuation profile v(V ), denote by A′ the ran-

dom subset of bidders that contains the highest bidders for items in A. Subset A′

corresponds to the random subset of bins chosen by throwing 2n balls into 3n bins
uniformly at random, under the restriction that some balls cannot fall in the same
bins, because they correspond to values of different bidders for the same item. The
probability that |A′| ≤ n is thus at most the probability calculated in Claim 5.31,
i.e., Pr[|A′| ≤ n] ≤ 1

3
. So with high probability, there exists a bidder i ∈ A′ that is

unallocated by the supply-limiting mechanism VCG≤n,≤`j due to the global supply
limit.

Let j be one of the items in A for which bidder i is in A′, i.e., i has one of the highest
values for j. At least one unit of j is unallocated by VCG≤n,≤dkj/2e. We conclude that
if |A′| > n then vi,j is the value of an unallocated bidder for an unallocated unit and
so G ≥ vi,j. Since vi,j ≥ N , the probability that G ≥ N is at least 2

3
, as required.
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Relating the Local Upper Bound to the Lower Bounds

We redefine a profitable item as follows.

Definition 5.39 (Profitable Item). Given a valuation profile v(V ) for environment
Env′, item j is profitable if when all units of j are removed from Env′ and VCG with
global supply constraint of n− dkj/2e and local supply constraints `′j 6= j is applied,
then dkj/2e+ 1 bidders whose values for j are among the kj + 1 overall highest values
for j remain unallocated.

When item j is profitable we can show the following.

Claim 5.40. For every profitable item j, if j ∈ B then Lj ≥ Sj, otherwise G ≥ Sj.

Furthermore we argue that an item is profitable with high probability.

Claim 5.41. For every item j, Pr[j is good] ≥ 4
9
.

Proof. (of Claim 5.40)
Let U be the set of bidders who are left unallocated by the deferred allocation

procedure of removing item j from Env′ and running VCG with global supply con-
straint of n − dkj/2e and local supply constraints `′j 6= j. Since j is profitable, U
includes dkj/2e + 1 bidders whose values for j are among the kj + 1 overall highest
values for j. The set of bidders who remain unallocated by VCG≤n,≤dkj/2e is U with
at most dkj/2e bidders removed. We conclude that there is an unallocated bidder
whose value for j is at least Sj. By definition of G and Lj as the highest value of an
unallocated bidder for an unallocated unit and for item j, respectively, depending on
whether item j is allocated either G ≥ Sj or Lj ≥ Sj, as required.

We show that item j is profitable with constant probability for every j by a
deferred allocation argument.

Proof. (of Claim 5.41) Running VCG with global supply constraint of n−dkj/2e and
local supply constraints `′j 6= j on environment Env′ after removing item j leaves at
least 2n+dkj/2e out of the 3n bidders unallocated, i.e., |U | ≥ 2n+dkj/2e. Since item
j does not take part in this deferred allocation procedure, its kj + 1 highest values
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are distributed uniformly among all bidders. The probability that at least dkj/2e+ 1

of these values are in U is at least 4
9
.

Proof of Main Lemma and Main Theorem

The statement of the main lemma and its proof do not change. Note that to define
the 2-to-1 mapping from {1, . . . , 2n} to B used in the proof we apply the assumption
that m ≥ 2n and so |B| = n. Proof of Theorem 5.36) follows directly in the same
way.



Chapter 6

Sequential Posted-Price Mechanisms

In this chapter, we propose mechanisms based on the sequential posted-price mech-
anisms, prove that they give approximately-optimal revenue guarantee based on
the “correlation gap,” and also show how to adapt such mechanisms to give prior-
independent approximations. This chapter is mainly based on [76].

6.1 Introduction

6.1.1 Settings and Mechanisms

We consider the single-dimensional downward-closed environments as defined in Sec-
tion 2.1. For such environments, mechanisms such as Myerson’s mechanism [61] or
the VCG mechanism [73, 21, 38] have optimal revenue or welfare guarantees, but
often suffer from having complicated formats or severe computational overhead. For
example, even in single-item auctions, the need for the agents to commit to the auc-
tion process itself can be a significant burden [7, 48], and in combinatorial auctions,
determining the allocation and payments of the VCG mechanism is a computationally
hard problem [63].

On the other hand, consider Sequential Posted-price Mechanisms (SPMs in short),
in which the seller makes take-it-or-leave-it price offers to agents one by one. Such
mechanisms are easy to run for the sellers, leave little room for agents’ strategic

111
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behavior, and keep the information elicitation from the agents at a minimum level.
Therefore, not surprisingly, such mechanisms are very often favored in practice [48].

In this chapter, we want to achieve two goals.

1. First, as simple SPMs are in general not optimal, we want to quantify how much
we lose by using the simple SPMs instead of the optimal mechanism.

2. Second, we want to understand how much information about the distribution is
needed for us to set prices in an SPM to achieve approximately-optimal revenue.

We achieve these two goals by instantiating the three-step approach in Section 1.7.1
toward achieving prior-independence. Essentially,

1. We identify a class of mechanisms, with certain parameters.

Here we consider the class of SPMs, with the parameters being prices set for
bidders.

2. Given distribution information, prove that for appropriate choice of prices
SPMs, we can achieve approximately-optimal revenue.

This helps us achieve our first goal, bounding the relative loss of using simple
SPMs compared to the optimal.

3. Without distribution information, find a way to set such prices, at a bounded
loss in revenue.

This helps us achieve our second goal, quantifying the information needed about
the distributions.

6.1.2 Main Results

SPM vs. OPT In a recent work of Chawla et al. [19], it was shown for several
contexts that the performance of a SPM (which we call greedy-SPM) approximates
that of the optimal mechanism by a constant factor, where the factor is 1

2
for matroid

environments (which generalize k-unit auctions, certain matching markets etc. see
Section 2.1.1), and 1− 1

e
for k-unit auctions. This is surprising, as SPMs can only offer
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prices to agents in a very restricted way, while the optimal mechanism can choose a
price for each agent based on full information about all other agents. What is the
underlying reason for the good performance of SPMs?

We give a theoretical explanation for this curious fact, based on a connection to
the notion of correlation gap which we elaborate on in Section 6.1.3. Exploiting this
connection, we give a tight analysis of the greedy-based SPM of Chawla et al. for
several environments. In particular, we show that it gives an (1 − 1

e
)-approximation

for matroid environments (an improvement over the previous 1
2
-approximation), gives

asymptotically a (1− 1√
2πk

)-approximation for the important sub-case of k-unit auc-
tions (an improvement over the previous (1 − 1

e
)-approximation), and gives a 1

p+1
-

approximation for environments with p-independent set system constraints, which
generalizes the result on intersection of p matroids in [19].

Prior-Independence We put SPMs into the prior-independent analysis frame-
work to study how much information about the distribution is needed to set good
prices in an SPM. For k-unit auctions with i.i.d. regular bidders, we prove that when
k is large compared to n, a single sample from the distribution as the price in SPM
gives a constant factor approximation. In the general case, a single sample fails to
work, but O(n) samples are sufficient for a constant factor approximation.

6.1.3 Technique: Analysis via Correlation Gap

Reducing Mechanism Design to Correlation Gap The notion of correlation gap
was first formalized in Agrawal et al. [2]. Let f(S) be a function that maps a subset
S of a finite ground set N to a nonnegative real number. For D a distribution over 2N

with marginal probabilities qi = PrS∼D[i ∈ S], let ID be the independent distribution
where each i ∈ N is included in the set with the same marginal probability qi, but
independently. The correlation gap of f is defined as the supremum of ES∼D[f(S)]

ES∼I(D)[f(S)]

over all distributions D, which in some sense bounds our “loss” in expected value of
the function by ignoring correlation.

Loosely speaking, the approximation ratio of SPMs w.r.t. the optimal mechanism
is related to correlation gap in the following way. The performance of a mechanism
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can often be related to the expectation of certain function f over a random set of
agents. For an optimal mechanism, this random set corresponds to the set of winners,
while for an SPM, this random set corresponds to the demand set, which is the set
of agents whose values beat the prices set for them in the SPM. Notice that the
winner set is highly-dependent, while the demand set is independent. By setting
prices for agents in an SPM carefully such that these two random sets have the same
marginal probabilities, we can apply the correlation gap of f to get a bound on the
approximation ratio of the SPM w.r.t. the optimal mechanism.

Reduction for k-Unit Auctions To illuminate the idea, suppose we sell k
items to a set of n agents N = {1, . . . , n} with valuations drawn i.i.d. from a regular
distribution F , and our goal is to maximize expected revenue. Define set function f
as f(S) = min(|S|, k) for S ⊆ N . Let q be the probability that Myerson’s optimal
mechanism sells to a particular agent (which is the same for every agent by symmetry).
It can be shown that if the distribution is regular, the optimal way to sell to an
agent with success probability q in an incentive compatible manner is to offer the
deterministic price p = F−1(1 − q). Therefore if we pretend that an agent pays p
whenever she wins in the optimal mechanism, the total calculated revenue is only
higher. In other words, the revenue of Myerson’s mechanism is upper-bounded by
EW [f(W )] · p, where W is the set of winners. On the other hand, let an SPM make
take-it-or-leave-it offers at price p to every agent sequentially. Define demand set D
as the set of agents whose values are at least p. Since at most k agents can be served,
by definition of f , the revenue of the SPM is equal to ED[f(D)] · p. Note that W
and D have the same marginal probability q for every bidder i, and D follows an
independent distribution. Therefore if we can show that the correlation gap of f is
at most β, then ED[f(D)] ≥ 1

β
·EW [f(W )], and it follows that the revenue of SPM is

a 1
β
-approximation to that of Myerson’s mechanism.
Submodularity The set function f that arises in our context is the weighted rank

function of the set system that encodes the feasibility constraints of the environment.
For settings where constraints are modeled by matroids, the weighted rank functions
are well-known to be monotone and submodular (see e.g., [68]). This fact enables
us to invoke a result from [74, 2], which says that the correlation gap of a monotone
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and submodular function is at most e
e−1

. It follows that for matriod environments,
SPMs can approximate the optimal mechanism by a factor of 1 − 1

e
. This result

would be otherwise difficult to achieve without making use of our explicit connection
to correlation gap and submodularity.

Recognizing submodularity is also helpful in other ways. In the analysis for k-unit
auctions, we exploit the cross-convexity of the multi-linear extension of submodular
functions to get a tight bound on the correlation gap of the corresponding weighted
rank function.

Benefits of the Reduction The reduction to correlation gap gives us a struc-
tured way of analyzing greedy-SPM. It abstracts away all the mechanism design
aspects of the problem, such that we can focus on the purely mathematical question
of quantifying correlation gaps of weighted rank functions.

6.1.4 Related Work

Sequential posted-price mechanisms have also been a recent focus of study due to
their simplicity and various appealing properties. Blumrosen and Holenstein [13]
first compared SPMs to Myerson’s mechanism for single-item auctions by an asymp-
totic analysis. Chawla et al. [19] studied SPMs in various auction contexts, proving
that SPMs perform very well compared to Myerson’s mechanism, which motivated
our work. They also used SPMs as a building block to construct approximately-
optimal mechanisms in multi-dimensional environments. Independent of our work,
Chakraborty et al. [18] proved almost the same approximation guarantee for k-unit
auctions. They also studied SPMs that adaptively choose prices and the ordering of
agents. Babaioff et al. [9] studied adaptive SPMs in settings where agents’ valuations
are drawn i.i.d. from an unknown distribution. In other aspects, Sundararajan and
Yan [70] studied the performance of SPMs when the sellers are risk-averse, and aim
to maximize expected utility.

There is a vast literature on the study of submodular functions (see references
in [74]). The correlation gap of monotone submodular functions was first bounded
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in [17], and it is also tightly related to the submodular welfare maximization prob-
lem [75]. In the context of auctions, Dughmi et al. [26] showed that in matroids
environments, the revenue of Myerson’s mechanism is submodular in the agent set.

6.2 Preliminaries

Correlation Gap and Submodularity Given a set function f : 2N → [0,∞)

over a finite set N , let D be a distribution over 2N with marginal probabilities q =

(qi)i∈N . Let S ∼ I(D) denote that each i ∈ N is included in S with probability qi
independently. Then the correlation gap [2] of f is supD

ES∼D[f(S)]
ES∼I(D)[f(S)]

. (let 0
0

= 1)
A set function f : 2N → [0,∞) is monotone if f(S) ≤ f(T ) whenever S ⊆ T , and

is submodular if f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ) for all S, T .

Theorem 6.1. [17, 2] The correlation gap of a monotone submodular function is at
most e

e−1
.

6.3 Posted-Price vs. Optimal: A Reduction to Cor-

relation Gap

We will focus on comparing SPMs to the optimal mechanism in the context of revenue
maximization. Almost identical claims can be made for welfare and certain other
objectives, which we discuss in Section 6.3.3.

6.3.1 A Single Bidder Optimization Problem

Before we embark on studying mechanisms that involve multiple bidders, it is crucial
to first understand the following optimization problem that involves only one bidder.

Problem 6.2. Given an agent with valuation distribution F , and a target selling
probability 0 < q < 1, what price distribution D maximizes our expected revenue,
i.e., Ep∼D[p·(1−F (p))], subject to the constraint that the selling probability is exactly
q, i.e., Ep∼D[1− F (p)] = q?
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Figure 6.3.1: Revenue Curve and “Ironed” Revenue Curve

To study this problem, first suppose that we can only offer a deterministic price.
Then for any selling probability q, our only choice is to offer the deterministic price
F−1(1− q), and the revenue we get as a function of q is RF (q) = q · F−1(1− q).

Now suppose instead we are allowed to offer a random price, then we can do
possibly better. To be specific, we can randomize between two prices p and p̄ with
selling probabilities q = 1 − F (p) and q̄ = 1 − F (p̄) satisfying q ≤ q ≤ q, and in
particular we draw p with probability q−q

q−q and draw p with probability q−q
q−q such that

the selling probability is exactly equal to q. Then our revenue is equal to q−q
q−q ·RF (q)+

q−q
q−q ·RF (q), which is possibly better than RF (q) (see Figure 7.2.2). Let RF (q) be the
maximum revenue one can get by randomizing between two prices this way. One
can show that RF equals to the concave closure of RF , i.e., the minimum concave
function that upper-bounds RF . Moreover, the optimal distribution is in fact just the
two-price distribution that gives RF (q).

In the well-known special case that F is regular, i.e., RF (q) is concave in q, the
two-price distribution degenerates to a single deterministic price F−1(1 − q), and
RF (q) = RF (q) in this case.

For the purpose of the rest of the paper, the following lemma summarizes this
discussion.

Lemma 6.3 (Ironing Lemma). [61, 16] For all valuation distribution F and proba-
bility q, the price distribution D that maximizes Ep∼D[p · (1 − F (p))] subject to the
constraint that Ep∼D[1−F (p)] = q is a two-price distribution, where this distribution
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as well as the revenue RF (q) it gives us can be determined from F . Moreover, RF (q)

is a concave function.

For notational convenience, we will use Ri to denote the RF function for agent i.

6.3.2 Reduction Theorem: the Revenue Case

For each bidder i and qi ∈ [0, 1], we define effective price as p̂i = Ri(qi)/qi. The
following defines the greedy-SPM of Chawla et al. [19] (with modifications that are
important for irregular distributions).

Definition 6.4. The greedy-SPM does the following:

1. For each agent i, calculate qi, the winning probability of agent i in Myerson’s
mechanism. Remove agent i if qi = 0.

2. For each agent i, draw a random price pi from the optimal price distribution
w.r.t. distribution Fi and selling probability qi according to the discussion in
Section 6.3.1.

3. Let A = ∅. For all agents i in decreasing order of effective prices p̂i, if serving
agent i is feasible, i.e., A + i ∈ I, offer price pi to agent i, and add i into A if
agent i accepts.

Theorem 6.5 (Reduction Theorem for Matroids). For matroid environments, if the
correlation gap of the weighted rank function is at most β for all non-negative weights,
then the expected revenue of greedy-SPM is a 1

β
-approximation to that of Myerson’s

optimal mechanism.

Proof. In the following two claims, we relate the expected revenue of both Myerson’s
mechanism and greedy-SPM to the weighted rank function with effective prices p̂i as
weights, which we denote as p̂∗(·).

Claim 6.6. Let W be the (random) set of winning agents in Myerson’s mechanism.
The expected revenue of Myerson’s mechanism is upper-bounded by EW [p̂∗(W )].
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Proof. Let qi = PrW [i ∈ W ] be the probability that agent i wins in Myerson’s
mechanism. By Lemma 6.3, the optimal way to sell to agent i with probability qi

gives expected revenue Ri(qi). By linearity of expectation, the expected revenue of
Myerson’s mechanism is upper-bounded by

∑
i∈N Ri(qi). To relate this to the effective

prices, suppose in Myerson’s mechanism, we get effective payment p̂i whenever agent
i wins. Then the total effective revenue is EW [

∑
i∈W p̂i]. Also, each agent i wins with

probability qi in Myerson’s mechanism, contributing qip̂i = Ri(qi) to total effective
revenue, and hence

∑
i∈N Ri(qi) equals effective revenue EW [

∑
i∈W p̂i]. Furthermore,

since W is a feasible set, we can rewrite EW [
∑

i∈W p̂i] as EW [p̂∗(W )], and our claim
follows.

Claim 6.7. Let demand set D be the (random) set of agents whose values beat the
prices set for them. The expected revenue of greedy-SPM equals to ED[p̂∗(D)].

Proof. Because valuation distributions of the agents are independent, each agent i is
in the demand set D with probability qi independently. Observe that ignoring agents
not in the demand set, who do not win anyway, greedy-SPM effectively runs the greedy
algorithm on the demand setD w.r.t. weights p̂i subject to feasibility constraints. The
expected effective revenue of greedy-SPM is hence equal to ED[

∑
i∈greedy(D) p̂i], which

is equal to ED[p̂∗(D)] by the optimality of the greedy algorithm for matroid. Note
that whenever the random price pi is offered to an agent, we get expected revenue
Ri(qi), while the expected effective revenue is qip̂i, also equal to Ri(qi). Therefore the
expected revenue of greedy-SPM equals to the expected effective revenue, which is
ED[p̂∗(D)].

By our assumption that the correlation gap of the weighted rank function is at
most β, we have ED[p̂∗(D)] ≥ 1

β
· EW [p̂∗(W )], and our theorem follows by chaining

this inequality with the above two claims.

For settings beyond matroids, we need the following technical condition for the
reduction to work, which is a stronger condition than merely a bound on correlation
gap.
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Definition 6.8. We say that the greedy algorithm verifies a correlation gap of β for
the weighted rank function of a set system, if for all nonnegative weights (wi)i∈N , and
distribution D over 2N , we have ES∼I(D)[

∑
i∈greedy(S) wi] ≥

1
β
· ES∼D[w∗(S)].

Theorem 6.9 (Reduction Theorem in General). For any downward-closed environ-
ment, if the greedy algorithm verifies a correlation gap of β for the weighted rank
function for arbitrary non-negative weights, then the expected revenue of greedy-SPM
is a 1

β
-approximation to that of Myerson’s optimal mechanism.

Proof. Similarly, we upper-bound the revenue of Myerson by EW [p̂∗(W )], and express
the revenue of greedy-SPM as ED[

∑
i∈greedy(D) p̂i]. The theorem follows by applying

the assumption that greedy verifies a correlation gap of β.

Remark 6.10. One crucial property about the greedy algorithm is that although we
are running greedy on the all agents, but for no matter what demand set it turns
out to be, greedy is also optimizing or approximately optimizing for this demand set.
Most other approximation algorithms do not have this property.

6.3.3 Extension to Welfare and Other Objectives

We specify an objective by defining functions of the form gi(v, p) for agents. If agent
i has true value v and is offered a price p with v ≥ p, then agent i wins, and we
gain objective value gi(v, p). Our goal is then to maximize the total objective value
we collect from the agents. For maximizing welfare, revenue, and surplus, we set
gi(v, p) = v, gi(v, p) = p, and gi(v, p) = v − p, respectively. One can also define other
objectives this way.

To adapt the definition of greedy-SPM and our reduction theorems, we need the
following changes. We defineGi(q) as the maximum expected objective value the seller
can get by offering a deterministic price such that the agent wins with probability
q. We can then derive an Ironing Lemma similarly, and also define Gi(q) similarly
from Gi(q). Then we use effective gain defined as Gi(q)/q to replace effective prices
as weights, and the rest of the proof goes the same way.
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6.4 Revenue and Welfare Guarantees of Greedy-

SPM

Based on the reduction theorem, we give a tight analysis of greedy-SPM, and prove
the guarantees in Theorem 6.11. By the reduction theorem, it suffices to study the
correlation gaps of the weighted rank functions, and the greedy algorithm, which we
do separately in the following subsections.

Theorem 6.11. The expected revenue of greedy-SPM is a β-approximation to that
of Myerson’s optimal mechanism, and the expected welfare of (the welfare version of)
greedy-SPM is a β-approximation to that of the VCG mechanism, where:

• β = 1− 1
e
for matroid environments

(an improvement over 1
2
)

• β = 1− kk

ekk!
≈ 1− 1√

2πk
for k-unit auctions

(an improvement over 1− 1
e
)

• β = 1
p+1

for p-independent environments
(a generalization from intersection of p matroids)

Remark 6.12. For matroid environments, as noticed in [19], if we run the VCG mech-
anism, and set reserves to be the same as the prices used in greedy-SPM, the revenue
we get is as good as that of greedy-SPM, for any particular valuation profile. It fol-
lows that the VCG mechanism with such reserve prices has the same approximation
guarantee for revenue.

6.4.1 Matroid Environments

By the reduction theorem, to establish an 1 − 1
e
-approximation of greedy-SPM in

matroid environments (see Section 2.1.1), it suffices to prove the following lemma.

Lemma 6.13. The correlation gap of the weighted rank function of a matroid is at
most e

e−1
.
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Proof. This lemma follows from the fact that the weighted rank function of a ma-
troid is monotone and submodular [68], and that the correlation gap of a monotone
submodular function is at most e

e−1
[17, 2].

6.4.2 k-Unit Auctions

k-Unit auctions form an important sub-class of a matroid environments. The fea-
sibility constraints of a k-unit auction is modeled by a k-uniform matroid. In the
following, we precisely quantify the correlation gap of the weighted rank function of
k-uniform matroids.

For a k-uniform matroid over n elements, the (unweighted) rank function is
fkn(S) = min(|S|, k) for S ⊆ N = {1, . . . , n}. We drop superscript and subscript
when the context is clear. It is easy to verify that f is monotone and submodular.
Define the multi-linear extension Ef(q) for q ∈ [0, 1]n (in the sense of [17]) as the ex-
pectation of f(S) where each i ∈ N is included in S with probability qi independently.
As was shown in [17], or can be easily verified using definitions, if f is submodular,
then Ef satisfies cross-convexity, in the sense that ∂2Ef(q)

∂qi∂qj
≤ 0 for all q ∈ (0, 1)n and

i 6= j.
For all n and 0 ≤ k ≤ n, define Φ(n, k) as the minimum of Efkn(q) over all

marginal probability vector q such that
∑

i∈N qi = k. In the following lemma, we
identify the probability vector q that minimizes Ef(q) subject to this constraint,
and show several useful properties about Φ(n, k). This lemma is interesting in itself,
and in fact can be used to improve the analysis of an SPM in [70].

Lemma 6.14. The following holds for Φ(n, k):

(a) Φ(n, k) = Efkn(q) where qi = k/n for all i ∈ {1, . . . , n}. In other words, Φ(n, k)

is the expected value of min(X, k), where X is a binomial random variable with
parameters n and k/n.

(b) Φ(n, k) monotonically increases with k, and monotonically decreases with n.

(c) limn→∞Φ(n, k) = k − kk+1

ekk!
≈ k − k√

2πk
.
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Proof. To prove (a), first for an arbitrary marginal probability vector q ∈ [0, 1]n,
consider vector q that is the same as q except that the i-th and j-th components are
averaged for some i 6= j, i.e., qi = qj = (qi + qj)/2. We show that Ef(q) ≤ Ef(q).
Let q′ be the same as q except with the i-th and j-th components switched, i.e.,
q′i = qj and q′j = qi. By symmetry of f , Ef(q) = Ef(q′), and q is the middle-point
of q and q′. By the cross-convexity of Ef , the value of Ef is convex in the line
segment connecting q and q′. Therefore Ef(q) is at most the average of Ef(q) and
Ef(q′), or simply Ef(q). Now starting with an arbitrary q, by repeatedly averaging
the maximum and minimum components of q this way, the value of Ef(q) keeps
decreasing, while all qi’s converge to k/n. By the continuity of Ef(q) in q, the value
of Ef(q) converges to the value of Ef at qi = k/n for all i. Therefore Ef(q) is
minimized at qi = k/n for all i.

To show (b), it is obvious that Φ(n, k) is monotonically increasing in k, because
fkn(S) is increasing in k. It suffices to show that Φ(n, k) is monotonically decreasing in
n. Recall that Φ(n, k) was defined to be the optimal value of a minimization problem.
To relate Φ(n, k) to Φ(n + 1, k), we cast the optimal solution for the optimization
problem that underlies Φ(n, k), which is an n-dimensional independent distribution, to
(n+1)-dimensional space, such that it gives a candidate solution to the minimization
problem underlying Φ(n + 1, k). To be specific, we observe that Φ(n, k) is equal to
Efkn+1(q), where q is an (n + 1)-dimensional vector with qi = k/n for i = 1, . . . , n,
and qn+1 = 0. By definition of Φ(n+ 1, k), Φ(n+ 1, k) ≥ Efkn+1(q) = Φ(n, k).
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We derive the asymptotics for Φ(n, k) as follows, where the last step is by Stirling’s
approximation of factorials.

lim
n→∞

Φ(n, k)

= lim
n→∞

n∑
t=0

(
n

t

)
·
(
k

n

)t
·
(
n− k
n

)n−t
·min(t, k)

= lim
n→∞

k−1∑
t=0

(
n

t

)
·
(
k

n

)t
·
(
n− k
n

)n−t
· t

+k ·

(
1−

k−1∑
t=0

(
n

t

)
·
(
k

n

)t
·
(
n− k
n

)n−t)

=
k−1∑
t=0

kt

t!
· 1

ek
· t+ k ·

(
1−

k−1∑
t=0

kt

t!
· 1

ek

)

= k ·
(

1− kk

ekk!

)
≈ k ·

(
1− 1√

2πk

)
.

Based on Lemma 6.14, we can first quantify the correlation gap of the unweighted
rank function, and then extend it to the weighted case.

Lemma 6.15. For n, k ≥ 1, the correlation gap of the function f(S) = min(|S|, k)

for S ⊆ N = {1, . . . , n} is exactly k
Φ(k,n)

.

Proof. For any probability vector q, let Oq be the distribution over 2N with marginal
probabilities q that maximizes ES∼Oq [f(S)]. We first show that ES∼Oq [f(S)] equals∑

i qi if
∑

i qi ≤ k, and equals k otherwise. (1) Suppose
∑

i qi ≤ k. First note that
ES∼Oq [f(S)] ≤ ES∼Oq [|S|] =

∑
i qi. Moreover, q can be seen as a point inside the

integral polytope with (characteristic vectors of) feasible sets (sets of size at most k)
as vertices. Then by standard polyhedral combinatorics [68], one can decompose this
point as a convex combination of the vertices, which corresponds to a distribution over
feasible sets with marginal probabilities q. This distribution gives expected f value∑

i qi. (2) If
∑

i qi > k, then by the monotonicity of ES∼Oq [f(S)] in q, ES∼Oq [f(S)]

is at least k. However it is also upper-bounded by k as f is upper-bounded by k.
Therefore ES∼Oq [f(S)] = k in this case.
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Suppose that q maximizes the “gap ratio” ES∼Oq [f(S)]

ES∼q[f(S)]
. We first show that r =∑

i qi ≤ k. If this is not the case, then by lowering the qi’s such that
∑

i qi = k,
ES∼q[f(S)] strictly decreases, while ES∼Oq [f(S)] is still k. This gives a strictly higher
gap ratio, contrary to that assumption that q maximizes the gap ratio.

Next we show that r = k. For r ≤ k, we can explicitly express the reciprocal of
the gap ratio as:

1

r
·

n∑
t=0

(
n

t

)
·
( r
n

)t
·
(
n− r
n

)n−t
·min(t, k)

=
n∑
t=1

(
n− 1

t− 1

)( r
n

)t−1
(
n− r
n

)n−t
· min(t, k)

t

This is equal to the expectation of min(X+1,k)
X+1

where X is the binomial random
variable with parameters n− 1 and r/n. It is also equal to

∫∞
0
Pr[min(X+1,k)

X+1
≥ x]dx.

Note that for x > 1, Pr[min(X+1,k)
X+1

≥ x] = 0, and otherwise Pr[min(X+1,k)
X+1

≥ x] =

Pr[X + 1 ≤ k/x], where Pr[X + 1 ≤ k/x] strictly decreases as r increases. Therefore
the gap ratio is maximized at r = k.

Lemma 6.16. For n, k ≥ 1, the correlation gap of the weighted rank function of a
k-uniform matroid of size n is at most k

Φ(k,n)
.

Proof. Again let f(S) = min(|S|, k) for S ⊆ N = {1, . . . , n}. Assume w.l.o.g. that
w1 ≥ w2 ≥ · · · ≥ wn, and let wn+1 = 0 for convenience. The weighted rank function
w∗(S) can be written as

∑
i∈N(wi − wi+1) · f(S ∩ {1, . . . , i}), a conic combination of

unweighted rank functions. The correlation gap of w∗ is therefore witnessed by the
correlation gap of f(S ∩{1, . . . , i}) for some i, and hence it equals sup1≤i≤n k/Φ(i, k).
By Lemma 6.14(b), Φ(i, k) is decreasing in i, and hence the correlation gap of w∗ is

k
Φ(k,n)

.

Remark 6.17. We cannot generalize Lemma 6.15 or 6.16 to work for arbitrary matroids
with rank k. For any k, consider the partition matroids with k parts, each of size
n, where a feasible set can only have at most one element from each part. The rank
of such a matroid is k, while the correlation gap is the same as that of a 1-uniform
matroid over n elements, which approaches e/(e− 1) as n increases.
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6.4.3 p-Independent Environments

There are interesting auction constraints that cannot be modeled by matroids, but can
be modeled by p-independent set systems. In a set system (N, I), a base of a subset
S ⊆ N is a maximal feasible subset of S. A set system (N, I) is a p-independent
system if for any non-empty subset S of N :

maximum size of a base of S
minimum size of a base of S

≤ p.

For example, a matroid is 1-independent, and vice versa. The edge sets of (non-
bipartite) matchings of a graph form a 2-independent system (but in general cannot
be cast as the intersection of a constant number of matroids). The intersection of p
matroids is p-independent. The feasible sets of agents in single-minded combinatorial
auctions with bounded bundle size p form a p-independent system (see Section 2.1
for definition).

It is well known that the greedy algorithm gives a p-approximation for p-
independent systems [51]. For our purpose, it suffices to prove the following lemma,
by combining arguments of [17, 19].

Lemma 6.18. The greedy algorithm verifies a correlation gap of p + 1 for p-
independent system constraints.

Proof. Fix marginal probabilities q. In the dependent case, if S is drawn from a
distribution D with marginal probabilities q, let q̃i be the probability that i is in
the optimal feasible subset of S (with arbitrary fixed tie-breaking). we can rewrite
ES∼D[w∗(S)] as

∑
i∈N q̃iwi by linearity of expectation.

Now consider the independent case, where each i is in S with probability qi in-
dependently, which we denote by S ∼ q. Let A = g(S) be the agents allocated
by running the greedy algorithm on S. The expected performance of greedy is
ES∼D[

∑
i∈Awi]. An equivalent way of looking at running the greedy algorithm on

the random set S is the following:

1. A = ∅
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2. visit all agents i ∈ N in decreasing order of weights:

(a) if A+ i ∈ I, we check if i is in S, and add i into A if yes.

(b) if A+ i /∈ I, we ignore i.

3. output A

Proof. Let the random set U be the set of agents that are ignored by greedy. Consider
the quantity Q = ES∼q[

∑
i∈Awi +

∑
i∈U q̃iwi]. For every agent i, if she is checked by

greedy, she contributes qiwi to Q. In particular, with probability qi, i is in S, and
we get weight wi. On the other hand, if she is ignored, she contributes q̃iwi to Q.
Therefore,

Q = ES∼q[
∑
i∈A

wi +
∑
i∈U

q̃iwi] ≥
∑
i∈N

q̃iwi = ES∼D[w∗(S)].

Next we show that w(A) ≥ 1
p

∑
i∈U q̃iwi, and our theorem would follow as:

ES∼q[
∑

i∈greedy(S)

wi] = ES∼q[
∑
i∈A

wi]

≥ 1

p+ 1
ES∼D[w∗(S)].

Let A contain i1, i2, . . . , il in the order of inclusion into A by greedy. Partition
U into Bj’s for j = 1, . . . , l, where Bj is the set of agents ignored by greedy after
i1, . . . , ij have been added into A. Therefore wi ≤ wij for i ∈ Bj. Consider the
set {i1, . . . , ij} ∪ B1 ∪ · · · ∪ Bj. At any time step, greedy’s solution set is always a
maximal feasible subset of the agents visited so far. Therefore {i1, . . . , ij} is a base of
{i1, . . . , ij} ∪B1 ∪ · · · ∪Bj. By the definition of p-independence, the maximal base of
{i1, . . . , ij}∪B1∪· · ·∪Bj has size at most p·j, and it follows that

∑
i∈B1∪···∪Bj

q̃i ≤ p·j
.

Now our claim
∑

i∈Awi ≥
1
p

∑
i∈U q̃iwi follows from the following inequalities: (let

wil+1
= 0)
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∑
i∈U

q̃iwi =
∑

1≤j≤l

∑
i∈Bj

q̃iwi

≤
∑

1≤j≤l

∑
i∈Bj

q̃iwij

=
∑

1≤j≤l

∑
i∈B1∪···∪Bj

q̃i(wij − wij+1
)

≤
∑

1≤j≤l

p · j · (wij − wij+1
)

= p ·
∑

1≤j≤l

wij = p ·
∑
i∈A

wi.

This ratio of p+ 1 is tight, up to lower order terms.

Proposition 6.19. For any sufficiently large positive integer p, there is a p-
independent set system with correlation gap at least p

log p
.

Proof. To define the set system (N, I), let Y be the set of all strings a1a2 . . . an of
length n over the alphabet {1, . . . , n}. For every i ∈ {1, 2, . . . , n} and b ∈ {1, . . . , n},
we denote by [ai = b] the “miniset” that contains all strings from Y with the i-th letter
ai being b. Then N is the set of all such minisets. To define the feasible subsets I, a
subset S of minsets from N is feasible if and only if no two minisets in S intersect.
Note that two different minisets [ai = b] and [ai′ = b′] intersect if and only if i 6= i′. It
is easy to verify that this set system is n-independent. Finally, we assign unit weights
to every miniset.

We choose a random subset S of N in two ways. In the dependent case, an index
i from {1, . . . , n} is chosen at random, and S contains the miniset [ai = b] for all
b ∈ {1, . . . , n}. Clearly all such S’s are feasible, and the rank function has expected
value n.

In the independent case, for all i, b, we include every miniset [ai = b] in S with
probability 1/n independently. For all i, let Xi be the number of minisets in S that
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have the form [ai = b] for some b. Then the rank function is equal to maxiXi. To
give a rough estimate of E[maxiXi], note that for all i,

Pr[Xi ≥
1

2
log n]

=
n∑

k= 1
2

logn

(
n

k

)(
1

n

)k (
1− 1

n

)n−k

≤
n∑

k= 1
2

logn

(n · e
k

)k 1

nk
≤ n ·

(
e

1
2

log n

) 1
2

logn

=
n

2Ω(logn·log logn)
.

Therefore for sufficiently large n, Pr[maxiXi ≥ 1
2

log n] ≤ 1−
(
1− n

2Ω(log n·log log n)

)n ≤
1
n
, and hence E[maxiXi] ≤ Pr[maxiXi ≥ 1

2
log n] ·n+ 1

2
log n ≤ log n. It follows that

the correlation gap is at least n
logn

for sufficiently large n.

6.5 Prior-Independence

In previous sections, it was crucial that we have knowledge about the prior distribu-
tions, so that we can calculate the prices to use in SPMs. In this section, we study
how this assumption can be removed to achieve prior-independent approximation
guarantees.

6.5.1 A Convex Program

In greedy-SPM, we need to compute the winning probabilities of the agents in Myer-
son’s mechanism, which is potentially computationally hard. This was addressed in
Chawla et al. by a sampling-based approach, which estimates the winning probabili-
ties by repeatedly running Myerson’s mechanism for sufficiently many times.

We note that the winning probabilities give a feasible solution to the following con-
vex program, whose optimal value gives an upper bound on the revenue of Myerson’s
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mechanism.

maximize
∑

i∈N Ri(qi)

subject to∑
i∈S qi ≤ rank(S) for all S

qi ≥ 0 for all i

Theorem 6.20. For matroid environments, let qi’s be an optimal solution to the
above convex program, then the greedy-SPM using qi’s in step 1 (see Definition 6.4)
gives a 1

β
-approximation to optimal expected revenue, where β is the correlation gap

of the weighted rank function of the matroid.

Proof. The proof is by literally applying previous analysis, along with two observa-
tions. First, we did not really work with the optimal expected revenue as a benchmark,
but used the upper-bound

∑
i∈N Ri(qi) in the analysis. Second, given feasible qi’s,

the optimal dependent distribution with marginals qi’s is a distribution defined over
sets that are feasible in the matroid.

Essentially, identifying qi’s that give us approximately-optimal SPMs is equivalent
to solving the above convex program approximately.

I.I.D. k-Unit Auctions

The convex program is particularly simple for a k-unit auction over n bidders whose
valuations are drawn i.i.d. from a distribution F . Let R be the ironed revenue curve
of F . Then the convex program is:

maximize n ·R(q)

subject to 0 ≤ nq ≤ k

Note that this convex program is simply maximizing a concave function over a
bounded interval, which can be done using a binary search.
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Figure 6.5.1: Convex Program for Bounding Optimal Revenue

6.5.2 Prior-Independence via Sampling

We focus on k-unit auctions over n bidders whose valuations are drawn i.i.d. from a
distribution F , where F is assumed to be regular. Regularity was defined in Section
2.3, and is important for prior-independence (see Example 3.5). To obtain a prior-
independent approximation guarantee, a natural idea is again to take sample bids to
learn about the distribution, which is the approach we used in Chapter 4. In this
section, we quantify how many samples are needed, depending on whether k is large
or small compared to n.

Remark 6.21. One might argue that if we run SPM in a practical setting like Buy-
It-Now in eBay, we do not get to take bid samples, as we only get binary feedbacks
based on whether the bidders accept the price offers or not. Here we emphasize that
we should not take our results too literally. For example, an eBay seller who runs a
Buy-It-Now auction definitely does not simply set a price without any idea about the
bidders’ potential values. Instead, he or she will look for sources to get an estimate
for bidders’ valuation information. It is not possible to precisely capture how the
seller obtains such information. But we can use bid sampling to roughly capture
this process as part of our mechanism, which allows us to quantify the amount of
information we need from the distribution to set good prices for an SPM.
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6.5.3 k-Unit Auctions with Large k

First we look at the large k case, where we assume that the ratio of ρ = k
n
is Ω(1).

Consider the following mechanism:

Definition 6.22 (Single-Sample SPM). Given a k-unit auctions with n ≥ 2 i.i.d.
regular bidders, the Single-Sample SPM mechanism does the following:

(1) Ask the first bidder’s bid, call it p.

(2) Run SPM with price p over the other bidders.

Theorem 6.23. For k-unit auctions with n i.i.d. regular bidders, the Single-Sample
SPM mechanism gives a prior-independent Φ(k,n−1)

2n−2
-approximation if k < n, and a

prior-independent 1
2
(1− 1

n
)-approximation if k = n. In particular, for k = Ω(n), the

approximation ratio is Ω(1).

Proof. For the case of k = n, the auction environment is the same as a digital goods
auction, where Single-Sample SPM is the same as the Single Sample mechanism in
Chapter 4 for digital goods auctions, where we lose a factor of 1

2
due to the use of a

random price instead of the optimal price, and a factor of 1− 1
n
due to the loss of the

sample bidder. We let k < n in the rest of the proof.
Let q = 1− F (p), which is distributed according to the uniform distribution over

[0, 1]. Then essentially we are using this random q as a candidate solution to the
following convex program:

• maximize (n− 1)R(q) subject to 0 ≤ q ≤ k
n−1

This q may not be feasible. But when it is feasible, the objective value we get for
the convex program is (n − 1)R(q). Therefore the expected objective we get from a
feasible q is Eq[(n− 1)R(q) · 1q≤ k

n−1
], which corresponds to n− 1 times the area of the

shaded region in Figure 6.5.2. Let q∗ be the optimal solution to the convex program,
which corresponds to the height of the shaded region. Then by concavity of the R(·)
function, this shade area is at least half of the base k

n−1
times the height R(q∗). It

follows that a random q gives at least k
2(n−1)

fraction of optimal objective value. Our
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Figure 6.5.2: Random q As A Solution to the Convex Program

theorem follows by applying the fact that the expected revenue of SPM at price p is
at least Φ(k,n−1)

k
fraction of the optimal objective value of the program, which in turn

upper-bounds the optimal expected revenue.

In other words, when k is large compared to n, a single sample from the distribu-
tion is sufficient enough information to achieve approximately optimal revenue.

6.5.4 k-Unit Auctions with Small k

When k is small, the following example shows that Single-Sample SPM does not give
a prior-independent constant factor approximation.

Example 6.24. Consider a single-item auction over n bidders, where the distribution
F is the equal-revenue distribution with parameter n. I.e., Prv∼F [v ≥ x] = 1

x
for

x ∈ [1, n) and Prv∼F [v = n] = 1
n
. The optimal mechanism is the Vickrey auction

with reserve n. Its expected revenue is at least (1 − 1
e
) · n, because with probability

at least 1 − 1
e
, some bidder has value n. On the other hand, consider Single-Sample

SPM. Let q = 1 − F (p), where p is the sample bid. With probability 1√
n
, q is at

most 1√
n
, which corresponds to a price that is at most n. With probability 1 − 1√

n
,

q is larger than 1√
n
, which corresponds to a price of at most

√
n. It follows that the

total expected revenue is at most 1√
n
· n+ (1− 1√

n
) ·
√
n, which is a vanishingly small

fraction of the optimal expected revenue.
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However, if we take more samples to learn about the distribution, we can achieve
a prior-independent Ω(1)-approximation.

Definition 6.25 (Many-Sample SPM for k = o(n)). For k-unit auctions with n

i.i.d. regular bidders where k = o(n), the Many-Sample SPM mechanism does the
following:

• Take the first half of the bidders’ bids v1, . . . , vbn/2c as samples.

• Run SPM with the k-th highest price v(k) among v1, . . . , vbn/2c over the rest of
the bidders.

Theorem 6.26. When k = o(n), Many-Sample SPM gives a prior-independent Ω(1)-
approximation.

Proof. Let n be even. Otherwise we ignore the last bidder in the analysis of revenue
of SPM.

Consider a k-unit auction over a set of n/2 bidders. The optimal expected revenue
of this auction is at least a constant fraction of that of the original environment. We
claim that SPM with a price p that corresponds to sale probability in the range of
[ k
n
, 2k
n

] gives a constant factor approximation to the optimal revenue for this setting.
First, by Theorem 6.1 of [26], the VCG mechanism gives a prior-independent (1− 2k

n
)-

approximation, where 1 − 2k
n

= 1 − o(1) as k = o(n). Then notice that in the VCG
mechanism, every bidder wins with probability 2k

n
. It follows that 2k

n
is a constant

factor approximately optimal solution to the upper-bounding convex program for this
k-unit auction. By concavity of the objective of the convex program, any q in the
range of [ k

n
, 2k
n

] is also a constant factor approximately optimal solution, and our claim
follows.

In the many-sample SPM mechanism, with positive constant probability, the k-th
sample v(k) has a sale probability q that is in the range of [ k

n
, 2k
n

], and it is used in
the non-sample set of n/2 bidders. When this is the case, by the above claim, we
achieve a constant factor approximation to optimal expected revenue of the original
environment.



Part III

Prior-Free Mechanisms
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Chapter 7

A Theory of Optimal Envy-Free

Pricing

7.1 Overview

Motivation In previous chapters, we developed several techniques for designing
mechanisms with prior-independent approximation guarantees1. However, the prior-
independence approach also has its limitations.

First, the guarantee only holds in expectation. In particular, it is possible that for
a valuation profile that is intuitively easy to extract good revenue from, the mechanism
does poorly. It would be ideal if for every valuation profile, we can also achieve some
kind of point-wise guarantee, making the guarantee more robust.

Second, we used the regularity assumption on valuation distributions. Although
this is a standard assumption in auction theory, there do exist distributions that are
not regular, such as the bimodal distributions. We should try to understand whether
and to what extent can this assumption be relaxed.

An Approach Based on An Envy-Free Benchmark In this and the fol-
lowing chapters, we deal with these two limitations by designing mechanisms that

1In this chapter, approximation ratios will be at least 1 instead of at most 1, to be consistent
with the original paper of Hartline and Yan [46].
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approximate what we call the envy-free optimal revenue benchmark EFO(v), for ev-
ery input profile v. Such an approximation guarantee holds for every input profile,
and is hence more robust. Moreover, we prove that a mechanism that approximates
the EFO benchmark is also automatically a prior-independent constant factor ap-
proximation w.r.t. i.i.d. tail-regular distributions, for matroid environments. Here
tail-regularity is a much weaker assumption than regularity. It follows that a mech-
anism that approximates the EFO benchmark achieves simultaneously average-case
and worst-case guarantees.

Envy-Freeness The key in our approach lies in the notion of envy-freeness. The
main challenge in designing revenue-maximizing mechanisms comes from the fact that
truthfulness, or incentive compatibility, binds across different input valuation profiles,
and we have to trade-off the performance of a mechanism over different inputs. On the
other hand, the notion of envy-freeness is defined per valuation profile. In particular,
an outcome is envy-free if no agent prefers the treatment of another. It follows that
optimal revenue from an envy-free outcome is well-defined for every valuation profile,
which is in fact how the EFO benchmark is defined. The EFO benchmark also seems
to be a natural one. For example for the simple setting of digital goods auction,
the benchmark corresponds to the benchmark of best single-price revenue, which has
been extensively studied (see e.g., Goldberg et al. [36]).

Interestingly, envy-freeness and incentive compatibility are similar, both struc-
turally, and revenue-wise. First of all, we give a characterization of envy-free out-
comes and their optima which are structurally equivalent to the characterization of
Myerson [61] of Bayesian optimal mechanisms applied to the empirical distribution
given by the actual profile of agent values. In particular, the envy-free optimal out-
come is a virtual-surplus maximizer. Second, for a given virtual surplus maximizer,
we prove that the maximum envy-free revenue and incentive compatible revenue are
closely related, roughly by a constant factor of 2.

There are several implications of the connections between envy-freeness and in-
centive compatibility. First, their revenue relationship implies that mechanisms that
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approximate the envy-free benchmark automatically give prior-independent approx-
imation guarantees. Second, the structural similarity is very helpful in designing
mechanisms that actually approximate the envy-free benchmark.

Prior-Free Mechanisms We exploit the connection between envy-freeness and
incentive compatibility to design mechanisms that approximate the envy-free bench-
mark. For matroid environment, we use a reduction-based approach, which re-
duces the problem to position auctions and then to multi-unit auctions. For general
downward-closed settings, we prove that the random sampling empirical Myerson
mechanism gives a constant factor approximation.

7.1.1 Outline

This chapter studies the notion of envy-freeness, and its connection to incentive com-
patibility. In Section 7.2 we characterize envy-free outcomes and their optima. In
Section 7.3 we compare incentive-compatible and envy-free revenues. In Section 7.4
we describe the EFO benchmark and study its implication to prior-independence.

Chapter 8 establishes mechanisms that approximate the EFO benchmark. In
Section 8.1 we describe a reduction-based approach where we show that, matroid
environments reduce to position auctions, which reduce to multi-unit auctions, which
reduce (with a loss of a factor of two) to digital goods auctions. In Section 8.2 we
describe a random sampling mechanism and analyze this mechanism in downward-
closed environments.

7.1.2 Related Work

Our work relies on the theory of optimal auctions as defined by Myerson [61] and
refined by Bulow and Roberts [16]. In particular, Myerson showed that Bayesian
optimal mechanisms are virtual surplus optimizers and Bulow and Roberts show that
the virtual value of an agent in this virtual surplus maximization can be viewed as the
marginal revenue as given by an agent’s value distribution. This connection between
envy-freeness and incentive compatibility is implicit in Jackson and Kremer [50] where
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it is shown that they are equivalent in the limit, in contrast we show that they are
structurally equivalent generally for finite cases as well.

The random sampling mechanism for digital goods was first studied by Goldberg
et al. [35]. The asymptotic performance of the mechanism was given by Segal [69]
and Baliga and Vohra [11] and the convergence rate was studied by Balcan et al.
[10]. In contrast, Goldberg et al. [37] consider the non-asymptotic behavior of the
random sampling mechanism and show that its performance is a (large) constant
factor from a prior-free benchmark that in retrospect coincides with ours. Alaei et al.
[4] give a nearly tight analysis that shows that the random sampling mechanism is a
4.68-approximation (the lower-bound is 4).

There have been numerous attempts to design good prior-free mechanisms for dig-
ital goods outside the random sampling paradigm. Two notable approaches include
an approximate reduction to the “decision problem”2 by Goldberg et al. [37] and an
approach based on statistical estimates that are non-manipulable with high proba-
bility by Goldberg and Hartline [34]. Hartline and McGrew [43] extend the former
approach and obtain an approximation factor of 3.25. Finally, Ichiba and Iwama [49]
show that a convex combination of these approaches gives an approximation factor
of 3.12. The 6.24-approximation we obtain is the instantiation of our reduction with
the 3.12 approximation of Ichiba and Iwama [49].

The digital goods mechanisms described above were analyzed in comparison to
a natural single-priced benchmark. Hartline and Roughgarden [44] suggest that ap-
proximation of a prior-free benchmark should imply approximation of the Bayesian
optimal mechanism for any i.i.d. distribution. Benchmarks for which such an implica-
tion holds are well grounded in the classical theory of Bayesian optimal auctions. They
propose the performance of the best, in hindsight, Bayesian optimal mechanism as a
benchmark. For multi-unit auctions, they characterize this benchmark as two-priced
lotteries. With this benchmark, Devanur and Hartline [22] extended the analysis of
Alaei et al. [4] to multi-unit auctions. In contrast, our benchmark, the envy-free opti-
mal revenue, can be viewed as a relaxation of the Hartline-Roughgarden benchmark

2Given a target profit, the decision problem is to construct a mechanism that obtains that target
profit when it is attainable.
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that is structurally simpler and analytically tractable in general downward-closed
environments.

Subsequent to our study, Ha and Hartline [40] generalized the statistical-
estimation-based approach of Goldberg and Hartline [34] to design a 32-approximation
of the envy-free benchmark in downward-closed environments. A generalization of
the reduction-to-the-decision-problem approach of Goldberg et al. [37] yields a 19-
approximation [39].

7.2 A Theory of Optimal Envy-Free Outcomes

In this section we derive a theory of optimal envy-free outcomes. It is most natural
to study envy-freeness in the context of position auctions.

7.2.1 Position Auctions

Position auctions are a generalization of multi-unit auctions that has recently been
under intense scrutiny due to its application to auctions for selling advertisements on
Internet search engines [72, 27].

Definition 7.1 (Position Auctions). There are n agents and n positions. We assume
that bidders are ordered in non-increasing order by their values. I.e., v1 ≥ · · · ≥ vn.
The positions have non-increasing weights w1 ≥ · · · ≥ wn ≥ 0, where we let w =

(w1, . . . , wn). If an agent i is assigned position j she is served with probability wj and
her value for this assignment is viwj.

A allocation is a (possibly random) assignment of agents to positions. We let
x = (x1, . . . , xn) denote the expected allocation, where xi is the probability of service
of the i-th highest bidder. We will only talk about expected allocation that can be
realized, and will not distinguish between allocation and expected allocation in the
rest of the chapter.
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7.2.2 Envy-Free Outcomes

Definition 7.2 (Envy-Freeness). An allocation x with payments p is envy-free for
valuation profile v if no agent prefers the outcome of another agent to her own.
Formally,

∀i, j ∈ {1, . . . , n}, vixi − pi ≥ vixj − pj.

We also require individual rationality, i.e., ∀i ∈ {1, . . . , n}, vixi − pi ≥ 0.

One could try to “absorb” individual rationality into the definition of envy-freeness,
by introducing a dummy agent n + 1 with vn+1 = xn+1 = pn+1 = 0. However, to
avoid the possible confusion from having two types of agent, we will not take this
approach. But for notational convenience, we will use vn+1 = xn+1 = pn+1 = 0. (But
i still ranges from 1 to n.)

We first characterize envy-free outcomes in terms of the allocation. For a given
allocation x there may be several pricings p for which the allocation is envy-free.
Since our objective is revenue maximization we will characterize the p corresponding
to x that gives the highest total revenue. The proof of this characterization as it is
nearly identical to that of the analogous (and standard) characterization of incentive
compatible mechanisms; we include it for completeness.

Definition 7.3. An allocation is swap monotone if the allocation probabilities have
the same order as the valuations of the agents, i.e., xi ≥ xi+1 for every agent i ∈
{1, . . . , n}. (Recall agents are ordered with vi ≥ vi+1.)

Lemma 7.4. In position auctions, an allocation x admits payments p such that
(x,p) is envy-free if and only if x is swap monotone. If x is swap monotone, then
the maximum payments for which (x,p) is envy-free and individual rational satisfy,
for every agent i,

pi =
∑n

j=i
(vj − vj+1) · (xi − xj+1)

=
∑n

j=i
vj · (xj − xj+1).
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The solid curve depicts a swap monotone allocation as a function of the values
(points). The shaded area corresponds to agent i’s payment pi from Lemma 7.4.

Figure 7.2.1: Reading Off Payment from Allocation Curve

See Figure 7.2.1 for a graphical exposition of the lemma.

Proof. In one direction, suppose x admits p such that (x,p) is envy-free, and we prove
that x is swap monotone. By definition, vixi−pi ≥ vixj−pj and vjxj−pj ≥ vjxi−pi.
By summing these two inequalities and rearranging, (xi−xj) ·(vi−vj) ≥ 0, and hence
x is swap monotone.

In the other direction, suppose x is swap monotone. Let p be given as in the
lemma. We verify that (x,p) is envy-free. There are two cases: if i ≤ j, we have:

pi − pj =

j−1∑
k=i

vk · (xk − xk+1) ≤ vi ·
j−1∑
k=i

(xk − xk+1) = vi · (xi − xj),

and if i ≥ j, we have:

pi − pj = −
i−1∑
k=j

vk · (xk − xk+1) ≤ −vi ·
i−1∑
k=j

(xk − xk+1) = vi · (xi − xj).

Rearranging the results of these calculations we have the definition of envy-freeness.
Any envy-free prices satisfy that: pi ≤ vi(xi − xi+1) + pi+1 as agent i does not

envy agent i+1 for i ∈ {1, . . . , n−1}, and pn ≤ vnxn by individually rationality. The
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payment identity above happens to make these inequalities equal. It follows that it
gives the maximum payments..

Remark 7.5. A similar characterization readily exists for minimum envy-free revenue,
which might be also of independent interest.

Importantly, the above characterization leaves us free to speak of the (maximum)
envy-free revenue of any swap monotone allocation x on values v, which we denote
by EFx(v). For any v and any symmetric environment we will now solve for the
envy-free optimal revenue, denoted by EFO(v).

R and R̄ are the revenue curve and ironed revenue curve of the valuation profile
(6, 4, 4). The ironed virtual value of the high-value agent is 6, and the ironed virtual
value of the two low-value agents are both (12− 6)/2 = 3. E.g., the optimal EF

revenue in the k = 2 unit auction is R̄(2) = 9.

Figure 7.2.2: An Example of Ironing

We will characterize the envy-free optimal revenue in terms of properties of the
valuation profile v. Given a valuation profile v we denote the revenue curve by
Rv(i) = i · vi for i = {1, . . . , n} (recall vi’s are indexed in decreasing order). For
convenience we also let Rv(0) = Rv(n + 1) = 0. The ironed revenue curve, denoted
R̄

v
(i), is the minimum concave function that upper-bounds Rv. Likewise, define the

virtual valuation function Φv(v) = Rv(i)−Rv(i− 1) and the ironed virtual valuation
function Φ̄v(v) = R̄

v
(i)−R̄

v
(i−1), where i ∈ {1, . . . , n+1} is such that v ∈ [vi, vi−1).

(We set v0 =∞ for notational convenience.) See Figure 7.2.2.
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Rv(i) is the best envy-free revenue one can get from serving exactly i agents at the
same price deterministically. Consider a 2-unit auction example with one high-value
agent with value 6 and two low-value agents with value 4. It is envy-free to serve
one high-value agent and one low-value agent at price 4, achieving revenue R(2) = 8.
Interestingly, this is not optimal. The following allocation and payments are also
envy-free: serve the high-value agent with probability 1 at price 5, and serve a low-
value agent chosen at random at price 4. Both units are always sold and the total
revenue is R̄(2) = 9. In what follows we will derive that this revenue is optimal among
all envy-free outcomes.

Lemma 7.6. The (maximum) envy-free revenue of a swap monotone allocation x

satisfies:
EFx(v) =

∑n

i=1
Rv(i) · (xi − xi+1) =

∑n

i=1
Φv(vi) · xi.

In a sense, the lemma states that two ways of accounting for revenue are equivalent.
In one way, for each agent i, with probability xi− xi+1, we allow the the top i agents
to win, extracting an envy-free revenue of Rv(i). In another way, for each agent i, the
virtual value of the i-th agent Φv(vi) = Rv(i)−Rv(i− 1) can be seen as the marginal
revenue contribution from allocating to agent i (in addition to agents 1, . . . , i− 1).

Proof. The formal proof is by the following equalities:

EFx(v) =
∑n

i=1
pi =

∑n

i=1

∑n

j=i
vj · (xj − xj+1)

=
∑n

i=1
ivi · (xi − xi+1) =

∑n

i=1
R(i) · (xi − xi+1)

=
∑n

i=1
(R(i)− R(i− 1)) · xi =

∑n

i=1
Φv(vi) · xi.

An implication of the characterization of the envy-free revenue of a pricing as its
virtual surplus, i.e.,

∑
i Φ(vi)xi, suggests that to maximize revenue, the allocation

should maximize virtual surplus subject to swap monotonicity (and feasibility). For
monotone virtual valuation functions, the maximization of virtual surplus results
in a swap monotone allocation. In general, the allocation that maximizes ironed
virtual surplus is both swap monotone and revenue optimal among all swap monotone
allocations.
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Lemma 7.7. In a position auction, the allocation that maximizes ironed virtual sur-
plus with ties broken randomly is swap monotone.

Proof. If Φ̄(vi) > Φ̄(vj) then xi ≥ xj; otherwise, swapping xi for xj would have
higher ironed virtual surplus. If Φ̄(vi) = Φ̄(vj), then xi = xj because of random tie
breaking.

Theorem 7.8. For any valuation profile v, the allocation x that maximizes ironed
virtual surplus w.r.t. Φ̄v maximizes envy-free revenue among all swap-monotone al-
locations. I.e., EFO(v) = EFx(v).

This theorem is proved by a useful lemma that relates revenue to ironed virtual
surplus.

Lemma 7.9. For any swap-monotone allocation x on valuation profile v,

EFx(v) ≤
∑n

i=1
Φ̄v(vi) · xi =

∑n

i=1
R̄

v
(i) · (xi − xi+1),

with equality holding if and only if xi = xi+1 whenever R̄
v
(i) > Rv(i).

Proof. To show the inequality, we have:

EFx(v) =
∑n

i=1
R(i) · (xi − xi+1)

=
∑n

i=1
R̄(i) · (xi − xi+1)

−
∑n

i=1
(R̄(i)− R(i)) · (xi − xi+1)

≤
∑n

i=1
R̄(i) · (xi − xi+1),

where we use the fact that R̄(i) ≥ R(i) and xi ≥ xi+1. Clearly the equality holds if
and only if xi = xi+1 whenever R̄(i) > R(i).

Proof of Theorem 7.8. Consider x that optimizes ironed virtual surplus with ran-
dom tie breaking and also consider any other swap monotone x′. Note that when-
ever R̄(i) > R(i), we have Φ̄v(vi) = Φ̄v(vi+1) for which random tie-breaking implies
xi = xi+1. Therefore x satisfies Lemma 7.9 with equality and it is optimal for the
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summation of the equality, whereas x′ satisfies it with inequality and may not be
optimal for the summation. Thus EFx(v) ≥ EFx′(v) and x is revenue optimal.

As an example of this theorem, consider the position auction environment with
weights w1 ≥ w2 ≥ . . . ≥ wn. An ironed virtual surplus maximizer assigns agents with
higher ironed virtual values to positions with larger weights, breaking ties randomly,
ignoring agents with negative ironed virtual values. The ironed virtual surplus, and
thus revenue, is

∑
{i : Φ̄(vi)≥0} Φ̄(vi) ·wi, which can be read off the revenue curve, e.g.,

Figure 7.2.2.
Importantly, ironed virtual surplus maximization for position auctions is ordinal,

i.e., only the order of the ironed virtual values matters. The optimal envy-free out-
come can then rephrased as follows: First, tentatively assign the agents to slots in
order of their values. Second, randomly permute the order of each group of agents
with equal ironed virtual surplus. In Section 8.1 we will discuss consequences for
environments for which surplus maximization is ordinal.

7.3 Incentive Compatibility vs. Envy-Freeness

7.3.1 Permutation Environments

In this section, we aim to connect envy-freeness to incentive compatibility in
downward-closed environments. However, envy-freeness only makes sense for envi-
ronment like position auctions where agents’ roles are symmetric, while downward-
closed environments are in general not symmetric. To study both envy-freeness and
incentive compatibility on a common ground, we introduce the class of permuta-
tion environments, which is a symmetric version of downward-closed environments.
Another motivation for permutation environments is that guarantee in permutation
environments extends to i.i.d. environments, which we will elaborate on in Section
7.4.
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Definition 7.10 (Permutation Environments). Given a downward-closed environ-
ment with agent set N = {1, . . . , n} and feasible sets I, in the corresponding permu-
tation environment, a permutation π of agents is drawn uniformly at random, and
the feasible sets are given by Xπ = {{π(i) : i ∈ S} : S ∈ I}.

In particular, given a truthful mechanism for an original environment, in the
permutation environment, we first randomly permute the roles of agents, and then
execute the mechanism.

Next we discuss what envy-freeness and incentive compatibility mean in permu-
tation environments.

Envy-freeness An allocation specifies for each permutation, which agents get
served, while a payment profile specifies for each permutation, how much each agent
pays. However for the purpose of envy-freeness, we only care about allocation and
payment in expectation over the random permutations. We let x = (x1, . . . , xn)

denote the expected allocation, where xi denotes the probability of service of the
i-th highest bidder, and let p = (p1, . . . , pn) denote the expected payments, with
expectation over random permutations. An outcome that consists of an allocation
and a payment profile is envy-free if:

∀i, j ∈ {1, . . . , n}, vixi − pi ≥ vixj − pj,

and is individual rational if:

∀i, j ∈ {1, . . . , n}, vixi − pi ≥ 0.

The characterization of envy-free outcomes and their optima extends straightfor-
wardly to permutation environments.

Incentive Compatibility The definition of a truthful mechanism is the same as
before. We repeat here for the sake of comparison.

A mechanism is given by an allocation rule x(v) and a payment rule p(v). Note
that here v is not ordered. A mechanism is incentive compatible or truthful if no agent
prefers the outcome when misreporting her value to the outcome when reporting the
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truth. Formally,

∀i, z,v, vixi(v)− pi(v) ≥ vixi(z,v−i)− pi(z,v−i),

where (z,v−i) is obtained from v with vi replaced by z.
A mechanism is individual rational if

∀i, z,v, vixi(v)− pi(v) ≥ 0.

We recall the well-known characterization of IC mechanisms and their revenue as
follows.

Definition 7.11 (Value Monotonicity). An allocation rule is value monotone if the
probability that an agent is served is monotone non-decreasing in her value, i.e.,
xi(z,v−i) is non-decreasing in z for all agents i.

Theorem 7.12. (Myerson [61]) An allocation rule x(·) admits a payment rule p(·)
such that (x,p) is incentive compatible if and only if x(·) is value monotone, and the
non-negative and individual rational payment rule is uniquely determined by:

pi(v) = vixi(v)−
∫ vi

0

xi(z,v−i)dz.

An Expected View of Truthful Mechanisms Note that the envy-freeness
constraint is imposed loosely in expectation over permutations, while incentive com-
patibility is imposed for every random permutation that assigns agents to roles in
the set system. For the purpose of revenue study in downward-closed permutation
environments, it is more convenient to look at the expected behavior of a truthful
mechanism in expectation over random permutations. In particular, for a valua-
tion profile v, we will redefine x(v) = (x1(v), . . . , xn(v)), where xi(v) is the prob-
ability that the i-th highest agent gets allocated in permutation environment, and
p(v) = (p1(v), . . . , pn(v)), where pi(v) is the expected payment that the i-th highest
agent pays over random permutations.
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The same revenue formula in Theorem 7.12 applies3. Because the payments are
uniquely determined by the allocation rule, for any x(·), we let ICx(v) denote the IC
revenue from running x(·) over v, where v is w.l.o.g. assumed to be ordered.

For brevity, we will simply call such x(·),p(·) as allocation rule and payment
rule, with the understanding that they only describe the expected behavior of an
underlying truthful mechanism.

7.3.2 Revenue Comparison

We now compare envy-free revenue to incentive-compatible revenue for ironed virtual
surplus optimizers in permutation environments. We show that these quantities are
often within a factor of two of each other.

In the following we use ICΦ̄
i (v) and EFΦ̄

i (v) to denote the IC and EF revenue from
agent i by applying the ironed virtual surplus maximizer for Φ̄, respectively.

First we lower-bound ICΦ̄
i (v) by half of EFΦ̄

i (v), under a technical condition on Φ̄

and v.

Lemma 7.13. For every downward-closed permutation environment, every valua-
tion profile v, and Φ̄, the ironed virtual valuation function corresponding to some
v′ obtained from v by setting a subset of agents’ values to be 0, we have that
ICΦ̄

i (v) ≥ 1
2

EFΦ̄
i (v) for all i.

Proof. Let x(·) denote the allocation rule of the ironed virtual surplus optimizer for
Φ̄. By the assumption of the lemma, for all j, Φ̄(z) is constant for all z ∈ [vj+1, vj),
and hence the IC allocation rule in fact maps each z ∈ [vj+1, vj) to xi(vj+1,v−i).

By Lemma 7.12, ICΦ̄
i (v) is equal to

∑n
j=i(vj− vj+1) · (xi(v)−xi(vj+1,v−i)) which,

referring to Figure 7.3.1, equals the area above the IC curve and below the horizontal
dotted line. On the other hand, EFΦ̄

i (v) is equal to
∑n

j=i(vj−vj+1) ·(xi(v)−xj+1(v)),
which similarly corresponds to the area above the EF curve and below the horizontal
dotted line. It suffices to prove that: xi(v) − xi(vj+1,v−i) ≥ 1

2
· (xi(v) − xj+1(v)).

This is equivalent to xi(v) + xj+1(v) ≥ 2xi(vj+1,v−i).
3Here we assume that xi(z,v−i) refers to the allocation probability of the agent with value z,

not the bidder with the i-th highest value among profile (z,v−i).
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Here the right-hand side can be interpreted as the total winning probability of
agents i and j + 1 after agent i drops her value. So the last inequality says that the
total winning probability of agent i and j + 1 can only decrease if agent i lowers her
bid to vj+1. To prove this, we fix the permutation that maps agents to roles of the
set system, and show that the number of winning agents from i and j + 1 can only
be lower after agent i decreases her value. There are two cases to verify: (1) Agent
i wins after the decrease. Then before the decrease, agent i had higher value, and
the optimal feasible set would be the same. (2) Agent j + 1 wins and agent i loses
after the decrease. Then before the decrease, at least one of agents i and j + 1 would
win.

Depiction of EF allocation and IC allocation rule from which the payments for agent
i are computed. The EF allocation curve maps each value in [vj+1, vj) to xj+1(v),
and the IC allocation curve maps each z to xi(z,v−i).

Figure 7.3.1: Comparison of EF Allocation Curve and IC Allocation Curve

In matroid permutation environments, envy-free revenue upper-bounds incentive-
compatible revenue.

Lemma 7.14. For every matroid permutation environment, valuation profile v, and
ironed virtual valuation function Φ̄, for all agent i, EFΦ̄

i (v) ≥ ICΦ̄
i (v).

Proof. Recall that EFΦ̄
i (v) =

∑n
j=i(vj − vj+1) · (xi(v) − xj+1(v)) and ICΦ̄

i (v) =∫ vi
0

(xi(v) − xi(z,v−i))dz. By the monotonicity of xi(z,v−i) in z, ICΦ̄
i (v) is upper-

bounded by
∑n

j=i(vj − vj+1) · (xi(v) − xi(vj+1,v−i)). It suffices to prove that
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xj+1(v) ≤ xi(vj+1,v−i). Here the right hand side can be also seen as the winning
probability of agent j + 1 after agent i drops value. To prove this inequality, ironed
virtual surplus maximizers are greedy algorithms in matroid permutation settings,
and if agent i decreases her bid to vj+1, agent j + 1 is less likely to be blocked by i
who was earlier in the greedy order, and is hence more likely to be allocated.

There are downward-closed permutation environments where the envy-free opti-
mal revenue does not upper-bound the incentive-compatible revenue of all virtual
surplus maximizers.

Lemma 7.15. There exists a downward-closed permutation environment and valua-
tion profile v, such that if Φ̄ = Φ̄v is the ironed virtual valuation function of v, then
ICΦ̄(v) > EFΦ̄(v).

Proof. Let there be n+ 1 agents. The “1 vs n” set system has two maximum feasible
sets, one is a singleton set and the other one has size n. These two sets are disjoint.
We define the valuation profile by specifying the virtual valuations. There are n
“small” agents with virtual values v + ε, v + 2ε, . . . , v + nε respectively, and one “big”
agent with virtual value nv+ n(n+1)

2
ε− ε2 for some small positive ε. The choice of the

ε terms is such that for the sum of the virtual valuations of the first n agents to beat
the big agent, no small agent can lower her virtual value to some other agent’s virtual
value. We will ignore ε terms from now on. Correspondingly, one can calculate the
revenue curve, and then derive the valuations of the agents: the valuation of the big
agent is nv, and the small agents have values n+1

2
v, n+2

3
v,. . . , 2n

n+1
v, ignoring ε terms.

The allocation rule is the ironed virtual surplus optimizer w.r.t. this valuation profile.
Note that a reserve of 2n

n+1
v is set because any value lower than this corresponds to a

negative ironed virtual value.
Observe that every agent wins if and only if she is assigned to the size n set, which

happens with probability n/(n+1). Therefore the EF revenue is 2n
n+1

v · n
n+1
· (n+1) =

2n2

n+1
v. To calculate the IC revenue, with probability n/(n+1), the big agent is assigned

to the size n set, and every of the n winning agents pays the reserve 2n
n+1

v. Also with
probability 1/(n+ 1), the big agent is assigned to the singleton set, and every agent
has to pay her own value, which sums up to Θ(nv log(n)). Therefore the IC revenue
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is 2n
n+1

v · n
n+1
· n + 1

n+1
Θ(nv log(n)), which is larger than EF revenue for sufficiently

large n.

7.4 The Envy-Free Optimal Revenue Benchmark

As discussed previously, no incentive-compatible mechanism obtains an optimal profit
point-wise on all possible valuation profiles. Therefore, to obtain point-wise guaran-
tees, the literature on prior-free mechanism design looks for the incentive compatible
mechanism that minimizes, over valuation profiles, its worst-case ratio to a given
performance benchmark. It is important to identify a good benchmark for such an
analysis to be meaningful.

If the designer had a prior distribution over the agent valuations then she could
design the mechanism that maximizes revenue in expectation over this distribution.
This is the approach of Bayesian optimal mechanism design as characterized by My-
erson [61] and refined by Bulow and Roberts [16]. Given a distribution F , virtual
values and revenue curves can be derived. The optimal mechanism is the one that
maximizes ironed virtual surplus.

Theorem 1. (Myerson [61]) When values are i.i.d. from distribution F the optimal
mechanism, ICOF , is the ironed virtual surplus optimizer for Φ̄ corresponding to F .

If the agent values are indeed drawn from a prior distribution, but the designer
is unaware of the distribution, then a reasonable objective might be to design a
mechanism that is a good approximation to the optimal mechanism for any unknown
distribution that satisfies some natural assumption. This is the prior-independent
objective.

One important criterion for a prior-free benchmark is that its approximation
should imply prior-independent approximation: if a mechanism is a constant ap-
proximation to the benchmark, then for a relevant class of distributions, it should be
a constant approximation to the Bayesian optimal mechanism under any distribution
from the class.
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For matroid permutation environments, Lemma 7.14 implies that for any values
v the optimal envy-free revenue EFO(v) (which is at least the envy-free revenue of
any ironed virtual surplus optimizer) is at least the incentive compatible revenue of
any ironed virtual surplus optimizer. By Theorem 1, the Bayesian optimal mech-
anism is an ironed virtual surplus optimizer so EFO(v) upper-bounds its revenue.
Consequently, a prior-free β-approximation to EFO is also a prior-independent β-
approximation for all distributions.

Unfortunately, even for simple the digital goods auctions it is not possible to
obtain a prior-free constant approximation to the EFO benchmark, as shown by
Goldberg et al. [36]. This impossibility arises because it is not possible to approximate
the highest value v1. For essentially the same reason, it is not possible to design a
prior-independent constant approximation for all distributions. We therefore restrict
attention to the large family of distributions with tails that are not too irregular.

Definition 7.16 (Tail Regularity). A distribution F is n-tail regular if in a single-
item auction over n agents with values drawn i.i.d. from F , the expected revenue of
the Vickrey auction is a 2-approximation to that of the optimal mechanism.

The definition of tail regularity is implied by Myerson’s regularity assumption via
the main theorem of Bulow and Klemperer [15]. The intuition for the definition is
the following. For single-item auctions over n agents, most of the actions happen
in the tail of the distribution, i.e, values v for which F (v) ≈ 1 − O(1)/n; therefore,
irregularity of the rest of the distribution does not have much consequence on revenue.
Tail regularity, then, restates the Bulow-Klemperer consequence, as a constraint on
the tail of the distribution and leaves the rest unconstrained.

We now define the benchmark for prior-free mechanism design. Approximation
of this benchmark guarantees prior-independent approximation of all n-tail-regular
distributions.

Definition 7.17. The envy-free benchmark is EFO(2)(v) = EFO(v(2)) where v(2) =

(v2, v2, v3, . . . , vn).

Theorem 7.18. For every n-agent matroid permutation environment, n-tail-regular
distribution F , and β-approximation mechanism to EFO(2), the expected revenue of
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the mechanism with valuations v drawn i.i.d. from F is a 3β-approximation to the
optimal mechanism for F .

Proof. By the reduction from matroid permutation environments to multi-unit auc-
tions in Section 8.1, it is sufficient to prove the statement for k-unit auctions. Let
Φ̄ be the ironed virtual surplus maximizer for F . We first upper-bound IC revenue
from bidders 2 to n:

ICF
2...n(v) ≤ EFΦ̄

2...n(v)

≤ EFO(v2, v3, . . . , vn, 0)

≤ EFO(v(2))

= EFO(2)(v)

Here the first inequality is by Lemma 7.14, and the last equality is by definition
of EFO(2).

To see the second inequality, both left hand side and right hand side correspond to
the maximum envy-free revenue from 2 . . . n that correspond to some outcome with
at most k items allocated and no envy among 2 . . . n, except that in the right hand
side, the outcome that maximizes this revenue is chosen.

To see the third inequality, note that the revenue curve of v(2) dominates that of
(v2, v3, . . . , vn, 0), and hence by Lemma 7.6, for every allocation, the envy-free revenue
for v(2) can only be higher.

Next we upper-bound IC revenue from bidder 1, where the expectation is over
i.i.d. draws from distribution F .

E[ICΦ̄
1 (v)] ≤ E[ICΦ̄(v) for single item auction]

≤ 2E[v2]

≤ 2E[EFO(2)(v)]

Here the second inequality is by the tail regularity assumption. The third inequality
is because EFO(2)(v) ≥ v2.
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To see the first inequality, consider the mechanism that first runs Φ̄, and then
only allows the highest bidder (bidder 1) to win. The IC payment of bidder 1 is the
maximum of the second highest bid and the threshold bid for bidder 1 to win in Φ̄.
This is as much as the threshold (or revenue) from bidder 1 in Φ̄ as in the left hand
side. On the other hand, the IC revenue of this mechanism is at most that of the
optimal single-item auction, which equals to the right hand side.

Together, we have that E[ICΦ̄(v)] ≤ 3E[EFO(2)(v)].

It is useful to compare the EFO benchmark to ones proposed in the literature that
are based on the VCG mechanism with the best (for the particular valuation profile
v) reserve price, e.g., [37, 45]. The VCG mechanism with a reserve price first rejects
all agents whose values to not meet the reserve, then it serves the remaining agents
to maximize welfare.

For matroid permutation environments, the EFO benchmark is a stronger bench-
mark than VCG-with-reserve. On one hand, the VCG-with-reserve benchmark can
be expressed as an ironed virtual surplus optimizer, and so by Lemma 7.14, EFO is
no smaller. On the other hand, the following lemma shows that EFO can be (al-
most) a logarithmic factor larger than VCG-with-reserve. Therefore, the EFO-based
benchmark results in stronger approximation guarantees for matroid permutation
environments.

Lemma 7.19. There exists a distribution F and an n-agent matroid environment
for which VCG with any reserve price is an Ω(log n/ log log n)-approximation to the
optimal mechanism for F .

Proof. Fix some number m.
The matroid we use is a partition matroid. In general in a partition matroid, the

ground set is partitioned into a number of disjoint sets, or sectors, where each sector
is associated with a capacity number. A set is feasible if and only if its intersection
with each sector does not exceed the capacity number of the sector.

Now we define the partition matroid we use. For each k ∈ {1, . . . ,m}, a type k
sector contains m3k−1 elements or agents and has capacity one. There are m2m−2k
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disjoint type k sectors for each k ∈ {1, . . . ,m}. So total number of agents n is at
most mO(m). Hence m is at least of order logn

log logn
.

Next we define the “sydney opera house distribution”, named after the zig-zag
shape of the revenue function. The distribution F is such that the value is distributed
according to uniform distribution [m2k+1− ε,m2k+1 + ε] with probability 1

m3k − 1
m3k+3

for k ∈ {0, . . . ,m−1}, and with probability 1
m3k for k = m. Here we take ε to be some

sufficiently negligible positive amount, and we will often omit ε related terms. So for
each k the revenue function R at 1

m3k+3 has left limit R( 1
m3k+3−) = m2k+3

m3k+3 = 1
mk , and

right limit R( 1
m3k+3 +) = m2k+1

m3k+3 = 1
mk+2 . Hence the ironed virtual valuation between

quantile 1
m3k+3 to quantile 1

m3k is
1

mk−1−
1

mk
1

m3k−
1

m3k+3

≈ m2k+1. Note that the ironed virtual
valuation is equal to valuation, ignoring minor terms.

To calculate the revenue of Myerson’s mechanism, for a type k sector, there are
m3k−1 agents. With probability at least 1 − (1 − 1

m3k )m
3k−1 ≈ 1

m
, the highest agent

is in quantile range (0, 1
m3k ), with ironed virtual valuation at least m2k+1. So the

expected ironed virtual valuation from a type k sector is at least m2k. Multiplied by
the number of type k sectors the total ironed virtual valuation, and hence expected
revenue is at least

∑
km

2k ·m2m−2k = m ·m2m.
To calculate the revenue of V CG with some reserve r, suppose w.l.o.g. r ≈ m2k′+1

for some k′. For a type k sector with m3k−1 agents, the dominant amount of revenue
is obtained from the following two cases:

1. When there are at least two agents with value at least m2k+1−ε (i.e. in quantile
1

m3k ), the lower of which has value at most m2k+1 + ε. This happens with prob-
ability roughly 1

m2 , and gives revenue m2k+1. Therefore the expected revenue
we get from this case is 1

m2 ·m2k+1, which multiplied by the number of type k
sector, is O(m2m−1).

2. When k = k′, and there is at least one agent who beats the reserve m2k+1. This
happens with probability at most 1

m
. Therefore the expected revenue from this

case is m2k+1 · 1
m
, which multiplied by the number of type k sectors is O(m2m).
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Summing over all k, the total expected revenue of V CG with reserve r is at most
O(m2m) +m ·O(m2m−1) = O(m2m), which is less than that of Myerson’s mechanism
by a factor of Ω(m) = Ω(log n/ log log n).

For matroid permutation environments we have given a Bayesian justification for
the envy-free benchmark EFO(2). A mechanism that approximates this prior-free
benchmark simultaneously approximates the Bayesian optimal mechanisms for most
i.i.d. distributions (i.e., those satisfying the relatively unrestrictive tail-regularity as-
sumption). We do not have a formal justification for the envy-free benchmark in
downward-closed permutation environments because of Lemma 7.15. Such a justifi-
cation would follow from the following conjecture:

Conjecture 7.20. For every downward-closed permutation environment and valu-
ation profile v, and ironed virtual valuation function Φ̄, for all agent i, EFΦ̄

i (v) ≥
ρ · ICΦ̄

i (v) for some positive constant ρ.



Chapter 8

Prior-Free Mechanisms

In this chapter, we give two approaches for designing prior-free mechanisms that
approximate the envy-free revenue benchmark.

Our first approach is via reduction. A digital goods auction (a.k.a., unlimited sup-
ply) is one where the mechanism has no inter-agent feasibility constraint. A multi-unit
auction (a.k.a., limited supply) is one where the mechanism has a constraint on the
number of agents that can be simultaneously served, e.g., multiple units of a single
item. We give a reduction from multi-unit auctions to digital goods auctions that
loses at most a factor of two in approximation factor. We then give a lossless re-
duction from position auctions and matroid environments to multi-unit auctions. To
obtain these reductions we establish a structural relationship between these environ-
ments. Given the 3.12-approximation for digital goods given by Ichiba and Iwama
[49], our reduction implies 6.24-approximations for multi-unit, matroid environment,
and position auctions.

Our second approach is via a generalization of the random sampling mechanism
of Goldberg et al. [35] and Baliga and Vohra [11]. The mechanism takes the following
form. The agents are randomly partitioned into a market and a sample. The sample
is then used for market analysis and its empirical distribution is calculated. The
optimal mechanism for the empirical distribution of the sample is then run on the
market. This prior-free mechanism is one of the most fundamental, and we extend
the analysis techniques derived for it in digital goods auctions to multi-unit auctions

158
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and (more generally) downward-closed environments. The approximation factors we
obtain are 12.5 for multi-unit (and by the reduction above, constrained-matching and
position auction environments) and 189 for downward-closed environments.

8.1 Multi-unit, Position, and Matroid Permutation

Environments

In this section we consider matroid permutation environments, position auctions, and
multi-unit auctions. We show that these environments are closely related. In fact, the
optimal mechanisms that are incentive compatible (or envy-free, resp.) across these
environments give the same expected allocation, and a wide class of mechanisms
give the same approximation factor. As an example, we will focus on approximating
the envy-free benchmark EFO(2) (Definition 7.17) with a prior-free mechanism. Our
solution will be via a two-step reduction: we reduce matroid permutation to position
auctions, which we then reduce to multi-unit auctions.

Recall that in a multi-unit auctions it is feasible to serve any set of agents of
cardinality at most some given k. In position auction environments there are weights
w1 ≥ w2 ≥ · · · ≥ wn for positions and feasible outcomes are partial assignments
of agents to positions. In matroid permutation environments there is a feasibility
constraint given by independent sets of a matroid, but the roles of the agents are
assigned by random permutation.

The property of these three environments that enables this reduction is that in
each environment the greedy algorithm on ironed virtual values (with ties broken
randomly) obtains the maximum ironed virtual surplus. The greedy algorithm works
as follows: order the agents by ironed virtual value and serve each agent in this
order if her ironed virtual value is positive and if doing so is feasible given the set
of agents previously served. Notice that the only information needed to perform
this maximization is the ordering on the agents’ ironed virtual values (but not their
magnitudes).
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Definition 8.1. The characteristic weights w1 ≥ w2 ≥ · · · ≥ wn of a matroid envi-
ronment are as follows: choose any valuation profile v with all distinct values, assign
the agents to elements in the matroid via a random permutation, run the greedy
algorithm w.r.t. v, and define wi to be the probability that i-th largest valued agent
is served.

8.1.1 Reduction for Ironed Virtual Surplus Maximizers

We first connect ironed virtual surplus optimization in the three environments.

Proposition 8.2. The ironed virtual surplus maximizing allocations have the same
expected allocation and virtual surplus in the following environments:

1. a matroid permutation environment with characteristic weights w,

2. a position auction with weights w,

3. a convex combination of multi-unit auctions where k units are available with
probability wk − wk+1 for k ∈ {1, . . . , n} and wn+1 = 0.

Proof. Fix a tie-breaking rule, which induces an ordering on the agents. Consider
the greedy algorithm on the agents with non-negative Φ̄ values according to this
ordering. The j-th agent with non-negative Φ̄ value in this ordering (1) gets allocated
with probability wj in the matroid permutation setting by definition of characteristic
weights, (2) gets assigned to position j in the position auction and hence gets allocated
with probability wj, and, (3) gets allocated in the k-unit auction for each k ≥ j,
and hence has probability

∑
k≥j(wk − wk+1) = wj of being served in the convex

combination setting. Taking expectation over all tie-breaking orders, agent i has the
same probability of being served in the three settings.

The following corollary is immediate.

Corollary 8.3. For every valuation profile v and weights w, the envy-free optimal
revenue is the same in each of the environments of Proposition 8.2.
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We now illustrate how to use Proposition 8.2 to show that an incentive compat-
ible prior-free approximation mechanisms for multi-unit auctions can be adapted to
give the same approximation factor in position auctions and matroid permutation
environments. Consider the following incentive compatible mechanism.

Definition 8.4. The Random Sampling Empirical Myerson (RSEM)mechanism does
the following: (discussion of payments omitted)

1. randomly partition the population of agents N = {1, . . . , n} into two sets by
flipping a fair coin for each agent,

2. designate the set containing the highest-valued agent as the market M and the
other set as the sample S,

3. calculate the ironed virtual surplus function Φ̄S for the sample S, and,

4. serve a feasible subset of M to maximize ironed virtual surplus with respect to
Φ̄S and reject all other agents.

Lemma 8.5. For every downward-closed environment, RSEM is incentive compatible.

Proof. We verify that RSEM is monotone. An agent in S loses unless she raises her
bid to beat the highest-valued agent (in which case the roles of S andM are reversed).
An agent in M wins when the virtual surplus maximizing set contains the agent. If
she raises her bid, she (weakly) increases her virtual value thus increasing the virtual
surplus of any set containing her, while the virtual surplus of other sets remain the
same. Therefore, she continues to win. By Theorem 7.12 monotonicity implies that,
with the appropriate payments, RSEM is incentive compatible.

The following theorem is from Devanur et al. [24].

Theorem 8.6. In multi-unit auctions, RSEM is a 12.5-approximation to the envy-
free benchmark EFO(2)(v).
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RSEM is incentive compatible because it is essentially an ironed virtual surplus
optimizer on the setM , and furthermore, it is incentive compatible even if the permu-
tation that assigns agents to the set system is fixed. As a final corollary of Proposi-
tion 8.2, we can view RSEM’s revenue in the matroid permutation or position auction
environment as the analogous convex combination of its revenue in multi-unit auction
environments.

Corollary 8.7. In matroid permutation environments and position auctions, RSEM
is a prior-free 12.5-approximation to the envy-free revenue EFO(2)(v).

8.1.2 General Reduction

The following prior-free approximations are essentially the best known for digital
goods and multi-unit auctions. Notably, the mechanism from Corollary 8.11 below,
is not based on ironed virtual surplus maximization and therefore Proposition 8.2
cannot be applied to construct a matroid permutation or position auction mechanism
from it.

Lemma 8.8. [49] In digital goods auctions, there is a prior-free incentive compatible
3.12-approximation to EFO(2)(v).

We now give an approximate reduction from multi-unit auctions to digital good
auctions. This construction and the proof that the resulting mechanisms incentive
compatibility are standard. See, e.g., Myerson [61], Goldberg et al. [37], and Aggarwal
and Hartline [1].

Definition 8.9 (Multi-Unit Reduction). Given a k-agent digital goods auction mech-
anism, we construct the following mechanism for k-unit auctions:

1. Simulate the k-unit Vickrey auction.

2. Simulate the mechanism for k-agent digital goods auction on the k winners of
the Vickrey auction.

3. Serve the agents who win in both stages and charge them the maximum of their
simulation payments; reject all other agents.
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Theorem 8.10. Given a mechanism for digital goods auctions that β-approximation
to the envy-free benchmark (resp. Bayesian optimal mechanism), the mechanism for
multi-unit auctions from the reduction is a 2β-approximation to the envy-free bench-
mark (resp. Bayesian optimal mechanism).

Proof. The digital goods auction is a β-approximation the envy-free benchmark on
the top k agents. The envy-free benchmark on the top k agents is equal to the VCG-
with-reserve benchmark for the full set of agents (both are equal to maxi≤k R(i)).
Theorem 10 of Devanur and Hartline [22] essentially states that the VCG-with-reserve
benchmark is a 2-approximation to the envy-free benchmark. Therefore, the multi-
unit auction from the reduction is a 2β-approximation to the envy-free benchmark.

Corollary 8.11. In multi-unit auctions, there is an incentive compatible prior-free
6.24-approximation to EFO(2)(v).

We now show how to construct, from a mechanism for multi-unit auction, a po-
sition auction mechanism and a matroid permutation mechanism that has the same
expected allocation as a convex combination of a series of mechanisms for multi-unit
auctions (as in Proposition 8.2). The challenge here is the distinct interfaces to the
environment: in multi-unit auctions we are given a supply constraint k and we need to
specify a set of at most k winners, whereas in position auctions, we are given weights
and need to output a partial assignment of agents to positions.

Definition 8.12 (Position Auction Reduction). Given a series of k-unit auction mech-
anisms for k ∈ {1, . . . , n}, we construct the following mechanism for the position
auction environment with weights w:

1. Introduce n dummy agents and n dummy positions into the system, indexed
by {n+ 1, . . . , 2n}. Correspondingly, we pad weights w and valuation profile v
with zeros such that they have dimension 2n.

2. For each k ∈ {1, . . . , n}, simulate the mechanism for k-unit auctions on valu-
ation profile v, and give the unallocated leftover units to the dummy agents
arbitrarily for free. Let the resulting allocation of all 2n agents be x(k).



CHAPTER 8. PRIOR-FREE MECHANISMS 164

3. Calculate the probability that each agent is served in the convex combination:
xi =

∑n
k=1 x

(k)
i (wk − wk+1), for i ∈ {1, . . . , 2n}.

4. Solve for a set of permutation matrices Pt ∈ {0, 1}2n×2n and nonnegative weights
rt with

∑
t rt = 1 such that

∑
t rt · Pt ·w = x.

5. With probability rt, assign agents to positions according to the permutation
specified by Pt.

6. Discard dummy agents and dummy position assignments.

To justify step 4, one can verify that w majorizes x in the sense that
∑k

i=1wi ≥∑k
i=1 xi for k ∈ {1, . . . , 2n}, with equality holding for k = 2n. Therefore by a

theorem of Rado [65], the desired permutation matrices and weights exist, and con
be computed efficiently. The following consequences are immediate.

Lemma 8.13. The resulting mechanism for position auction with weights w obtained
from the above reduction has the same expected allocation as the convex combination
of k-unit auctions with (wk − wk+1)’s as probabilities.

Lemma 8.14. Given an incentive compatible multi-unit auctionmechanism , the
mechanism from the position auction reduction is also incentive compatible.

Definition 8.15 (Matroid Permutation Reduction). Given a matroid permutation
environment with characteristic weights w, and a position auction mechanism for
weights w, we construct the following mechanism for the matroid permutation envi-
ronment:

1. We run the mechanism for position auctions and for i = 1, . . . , n, let ji be the
position assigned to agent i, or ji = ⊥ if i is not assigned a position.

2. Reject all agents i with ji = ⊥.

3. Run the greedy algorithm in the matroid permutation environment with agent
i’s value reset to ji.
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The following conclusions are immediate.

Lemma 8.16. The resulting mechanism for the matroid permutation environment
obtained from the above reduction has the same expected allocation as the mechanism
for position auction.

Lemma 8.17. Given an incentive-compatible position auction mechanism , the mech-
anism from the matroid permutation reduction is weakly incentive compatible, where
weak incentive compatibility is defined where agents’ utilities are defined in expectation
over random permutations, instead of per permutation.

Theorem 8.18. The factor β to which there is a prior-free incentive-compatible
(weakly incentive-compatible for matroid) approximation of EFO(2)(v) is the same
for multi-unit, position, and matroid permutation environments.

Corollary 8.19. There is a prior-free incentive-compatible 6.24-approximation to
EFO(2)(v) in position auctions, and a weakly-incentive compatible one for matroid
permutation environments.

There are two weakness in the reductions implied by Theorem 8.18 in comparison
to those implied by Proposition 8.2. Recall that for the latter, ironed virtual surplus
maximizations are via the greedy algorithm, and so the reductions were algorith-
mically trivial. In contrast, Theorem 8.18 requires knowledge of the characteristic
weights to run the construction, these weights may be hard to compute. In addition
the mechanism that results from the matroid permutation reduction is only weakly
incentive compatible.

8.2 Downward-closed Permutation Environments

In this section, we will show that a variant of RSEM (recall Definition 8.4) approxi-
mates the envy-free benchmark by a constant factor.

Definition 8.20 (RSEM’). The variant RSEM′ is identical to RSEM except Step 4:
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4′. find the feasible subset W of N (the full set of agents) to maximize ironed
virtual surplus with respect to Φ̄S, serve agents in M ∩W (the winners from
the market M) only, and reject all other agents.

The proof we give that RSEM′ is a good approximation to the envy-free benchmark
is based on the fact that with large probability the sample and market satisfy a natural
balanced condition. This condition requires that for all prefixes of the agents sorted
by value that a good fraction of these agents are in both of market and sample. The
proof then has four main steps: show the probability of balance is high, show that
balance implies that the loss in ironing in the “wrong” way can be bounded, show
that balance implies that the IC revenue of RSEM′ (on the market M) is close to the
optimal EF revenue for the sample S, and show the expected optimal EF revenue of
the sample is close to the envy-free benchmark.

8.2.1 Balanced Partitioning

We now show that with high probability the partitioning of the agents into the market
and sample satisfies a natural balanced property. Recall that, by definition of the
mechanism, agent 1 is in M . This balanced property is a double-sided version of the
balanced property introduced by Feige et al. [29].

Definition 8.21. A partitioning (S,M) of agents N = {1, . . . , n} is balanced if 1 ∈M
and 2 ∈ S and for any set of three or more of the highest valued agents both the
market and sample contain at least a quarter of agents in the set. I.e., for i ≥ 3,
|S ∩ {1, . . . , i}| ≥ i/4 and |M ∩ {1, . . . , i}| ≥ i/4.

Lemma 8.22. Conditioning on 1 ∈M , a random partitioning (S,M) of N is balanced
with probability at least 0.339.

Proof. Conditioning on 1 ∈ M and 2 ∈ S, the probability that either part is imbal-
anced can be calculated to be at most 0.161 by a simple probability of ruin analysis
which comes from Feige et al. [29] (details given below). By the union bound, both
parts are balanced with probability at least 0.678. Agent 2 is in S with probability
1/2 so the probability of balance conditioned on agent 1 in M is at least 0.339.



CHAPTER 8. PRIOR-FREE MECHANISMS 167

The following analysis from Feige et al. [29] shows that the probability that S is
imbalanced is at most 0.161. Consider the random variable Zi = 4 |S ∩ {1, . . . , i}|− i;
the balanced condition is equivalent to Zi ≥ 0 for all i ≥ 3. By the conditioning i = 2

and S ∩ {1, 2} = {2} imply that Z2 = 2. View Zi as the positions of a random walk
on the integers that starts from position two and takes three steps forward (at step i
with i ∈ S) or one step back (at step i with i 6∈ S), each with probability one half.
If this random walk ever arrives at position −1 the partitioning is imbalanced. This
probability r of ever taking one step back in such a random walk can be calculated
as the root of r4 − 2r + 1 on interval (0, 1) which is about 0.544. The probability of
imbalance is then r3 ≤ 0.161 (i.e., if we ever take three steps back when starting from
position two). By symmetry, the probability of imbalance in the market M is also at
most 0.161.

8.2.2 Sub-Optimal Ironing

We need to give a detailed analysis of what happens in terms of envy-free revenue when
we optimize for the wrong virtual values. To do that we will define and consider the
effective revenue curve, R̃, and perceived revenue curve, R̂. Intuitively, R̂ corresponds
to the revenue we think we get when optimizing Φ̄S on v, and R̃ corresponds to the
revenue curve we actually end up with.

Definition 8.23 (Effective revenue curve R̃). For values v and ironed virtual valua-
tions Φ̄S for S: group agents with equal nonnegative Φ̄S values into consecutive classes
{1, . . . , n1}, {n1 + 1, . . . , n2}, . . . , {nt−1 + 1, . . . , nt} and define the effective revenue
curve R̃ from R = Rv by connecting the points (0, 0), (n1,R(n1)), . . . , (nt,R(nt)) and
then extending horizontally to (n,R(nt)), i.e., ironing the values in each class.

Figure 8.2.1a depicts an example of the effective revenue curve. The three rays
from the origin, which correspond to values at which Φ̄S makes a piece-wise jump,
divide the first orthant into four regions. For every region, every point (i,R(i)) in the
region (which corresponds to value vi) has the same Φ̄S value. In each region these
points get “ironed”, and hence the line segment in R̃.

Lemma 8.24. EFΦ̄S

(v) =
∑n

i=1 R̃(i) · (xSi (v)− xSi+1(v)).
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(a)

(b) Revenue dominance

Figure 8.2.1: Effective Revenue Curves and Revenue Dominance

Proof. We have the following equalities:

EFΦ̄S

(v) =
∑n

i=1
R(i) · (xSi (v)− xSi+1(v))

=
∑n

i=1
R̃(i) · (xSi (v)− xSi+1(v))

Here the first equality is by Lemma 7.9. To justify the second equality, note that
whenever R̃(i) 6= R(i), there are two cases: (1) i is in {nj−1 + 1, . . . , nj − 1} for
some j, and so vi and vi+1 have the same Φ̄S value, and hence xSi (v) = xSi+1(v); and
(2) i is bigger than nt, and so vi and vi+1 both have negative Φ̄S value, and hence
xSi (v) = xSi+1(v) = 0.

For a set of agents S, let vS denote (vS,0N−S), i.e., the valuation profile (of n
agents) obtained from v by decreasing the values of agents outside S to 0. Note
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that v = vN . Let RS and R̄
S be the revenue curve and ironed revenue curve of the

valuation profile vS respectively.

Lemma 8.25. For all 1 ≤ i ≤ n, R̃(i) ≥ R̄
S
(i).

Proof sketch. Figure 8.2.1 depicts the relationship between the revenue curves. Ob-
serve that revenue curve R dominates RS in the sense that for every slope t, the
intersection of the ray y = tx with R is farther away from the origin than its inter-
section with RS. Transforming R and RS to the effective revenue curves using the
same ironed virtual valuation function Φ̄S do not change such dominance relation-
ship, and moreover, because R̄

S is non-decreasing and concave, it follows that vertical
dominance also holds, i.e., R̃(i) ≥ R̄

S
(i) for all i.

Definition 8.26 (Perceived revenue curve R̂). The perceived revenue curve for Φ̄S

on v is given by R̂(i) =
∑i

j=1 Φ̄S(vi) for i ∈ N .

Let v̂ be the valuation profile corresponding to R̂, i.e., v̂i = R̂(i)/i, and let xv̂ be
the ironed virtual surplus maximizer for Φ̄v̂.

Lemma 8.27. xSi (v) = xv̂i (v̂).

Proof. Compare running the ironed virtual surplus maximizer xS for Φ̄S on v with
running xv̂ for Φ̄v̂ on v̂, the ironed virtual valuation of agent i in either case is equal
to Φ̄S(vi). Therefore these two ironed virtual surplus optimizers will choose the same
allocation, and the lemma follows.

Lemma 8.28. Given a balanced partitioning (S,M), then R̄
S
(i) ≥ 1

4
R̂(i) ≥ 1

4
R̄
S
(i)

for all 1 ≤ i ≤ n.

Proof. For each i, R̂(i) is the sum of the i largest ironed virtual values in N with
respect to Φ̄S while R̄

S
(i) is the sum of the i largest with respect to S. Therefore

R̂ ≥ R̄
S
(i). Since (S,M) is double-side balanced, applying Lemma 8.30, we also have

that for all i, R̄
S
(i) ≥ 1

4
R̂(i).

Now we are ready prove the following key lemma:
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Lemma 8.29. For every downward-closed permutation environment, valuation profile
v, and balanced partitioning (S,M), EFΦ̄S

(vN) ≥ 1
4

EFΦ̄S

(vS) = 1
4

EFO(vS).

Proof. Let xS and xv̂ be short-hands for the ironed virtual surplus optimizers with
ironed virtual valuation functions defined for vS and v̂, respectively. The proof is by
the following inequalities:

EFΦ̄S

(vN) =
∑

i
R̃(i) · (xSi (vN)− xSi+1(vN))

=
∑

i
R̃(i) · (xv̂i (v̂)− xv̂i+1(v̂))

≥ 1
4
·
∑

i
R̂(i) · (xv̂i (v̂)− xv̂i+1(v̂))

≥ 1
4
·
∑

i
R̂(i) · (xSi (vS)− xSi+1(vS))

≥ 1
4
·
∑

i
R̄
S
(i) · (xSi (vS)− xSi+1(vS)).

Here the first two equalities are guaranteed by our definitions of R̃ and R̂. The
first inequality is by Lemma 8.25 and Lemma 8.28, the second inequality is by the
optimality of xv̂ for v̂, and the third inequality is by Lemma 8.28 again.

8.2.3 Market Revenue vs. Sample Revenue

We now show that conditioned on a balanced partitioning of the agents into a market
and sample, that the revenue of RSEM′ from the market is close to the envy-free
optimal revenue from the sample. The revenue of RSEM′ is precisely ICS

M(vN), i.e.,
the revenue we get from the agents in M when using the virtual value functions from
S and optimizing virtual values over the full set of agents N . We wish to compare
this revenue to the envy-free optimal revenue on the sample, EFO(vS).

Lemma 8.30. Given a balanced partitioning (S,M), for every non-increasing se-
quence a1, . . . , an of nonnegative reals and all i ∈ N ,

∑
j∈M∩{1,...,i} aj ≥

1
4

∑
j∈{1,...,i} aj.

Corollary 8.31. Given a balanced partitioning (M,S), we have EFSM(vN) ≥ 1
4
·

EFSN(vN).
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Proof. Notice that the EF payments of bidders in EFSN(vN) forms a non-increasing
sequence. The corollary follows from plugging these EF payments into Lemma 8.30.

Lemma 8.32. Given a balanced partitioning (M,S), ICRSEM′(v) ≥ 1
32

EFO(vS).

Proof. The proof is given by the following sequence of inequalities:

ICRSEM′(v) = ICS
M(vN) (Definition 8.20)

≥ 1
2

EFSM(vN) (Lemma 7.13)

≥ 1
8

EFSN(vN) (Corollary 8.31)

≥ 1
32

EFSS(vS) (Lemma 8.29)

= 1
32

EFO(vS).

8.2.4 Expected Sample Revenue vs. The Envy-Free Bench-

mark

We now show that the expected envy-free revenue of the sample compares favorably
with the envy-free benchmark; this is the last ingredient in the proof of Theorem 8.35.
We will make this argument conditioned on a balanced partitioning; however, the
result is true for any symmetric conditioning (including none at all).

Lemma 8.33. For a partitioning (S,M) of N , we have that EFO(vS) + EFO(vM) ≥
EFO(vN).

Proof. EFO(vN) = EFO(vS∪M) is the maximum revenue we can get from S ∪ M
subject to the envy free constraints. Let agents in M contribute total revenue R to
EFO(vN). By setting the agents in S to have zero valuations to obtain valuation
profile vS, we basically removed envy-freeness constraints between agents in S and
agents in M . With fewer envy-freeness constraints, the maximum envy-free revenue
we can get from M , i.e., EFO(vM), can only be larger. Similarly, the total revenue
that S contributes to EFO(vN) is at most EFO(vS), and our lemma follows.
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Lemma 8.34. E[EFO(vS) | B] ≥ 1
2

EFO(2)(v) where B is the event that S and M
are balanced.

Proof. The lemma follows from Lemma 8.33, symmetry, and the fact that agent 1 is
always in M .

8.2.5 Putting It All Together

Theorem 8.35. For downward-closed permutation environments, E
[
ICRSEM′(v)

]
≥

1
189

EFO(2)(v) for all v.

Proof. Let B denote the event that the market and sample are balanced. Lemma 8.22
states that the probability that the partition is balanced is at least:

Pr[B] ≥ 0.339.

The expected IC revenue of RSEM’ is at least its revenue conditioned on event B.
I.e.,

E
[
ICRSEM′(v)

]
≥ Pr[B]E

[
ICRSEM′(v) | B

]
.

Lemma 8.32 states that for every v that the balance condition implies the IC
revenue of RSEM’ is at least a 1

32
fraction of the EF optimal revenue on the sample.

Taking expectations,

E
[
ICRSEM′(v) | B

]
≥ 1

32
E[EFO(vS) | B] .

Lemma 8.34 states that the EF optimal revenue on the sample is at least half the
envy-free benchmark, in expectation and conditioned on a balanced partitioning. I.e.,

E[EFO(vS) | B] ≥ 1
2

EFO(2)(v).

Combining the above inequalities we conclude that the IC revenue of RSEM’ is
at least a 189-approximation to the envy-free benchmark. I.e.,

E
[
ICRSEM′(v)

]
≥ 1

189
EFO(2)(v).
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Part IV

Conclusion
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Chapter 9

Conclusions and Future Directions

9.1 Summary

In this thesis, we have introduced the prior-independent analysis framework, and iden-
tified several prior-independent mechanisms. Our mechanisms are based on welfare-
maximizing with reserves, supply-limiting, sequential posted-price, and Myerson’s
mechanism with respect to empirical distribution. Except the last one, our mecha-
nisms enjoy the following features that are important in practice:

Simplicity These mechanisms are in general simple to run, which do not incur the
burden of obtaining distribution information outside of the auction.

Naturalness These mechanisms are also based on natural ideas such as welfare-
maximization, reserve pricing, supply-limiting, etc. In particular from the bid-
ders’ point of view, what the mechanisms do are natural and can be expected.

Robustness The approximation guarantee holds for a wide class of distributions.

Near-optimality The approximation ratios we prove are in most cases very good.
In several cases, our approximation ratios approach 1 in the limit as either the
number of bidders or the number of items goes to infinity.

Indeed, mechanisms based on similar strategies are commonly deployed in practice,
and prior-independence gives us a formal way to justify that we are not losing much

175
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revenue compared to the optimal mechanism, by sticking to simple strategies for
practical reasons.

9.2 Open Questions

Besides improving over the various constant approximation factors in this paper, there
are several questions that we left open. We list a few important ones in the following:

1. For single-dimensional downward-closed environments, is there a prior-
independent mechanism w.r.t. i.i.d. regular distributions?

2. For single-dimensional downward-closed permutation environments, does EF
revenue (approximately) upper-bound IC revenue for virtual surplus maximiz-
ers? (See Conjecture 7.20.) We only know that this is true for matroid envi-
ronments. If this can be proved, then approximating the EFO benchmark for
downward-closed environments would imply a prior-independent approximation
guarantee. It would also resolve the previous open problem.

3. To what extent does the supply-limiting mechanism work for matching problems
with non-i.i.d. bidders?

9.3 Prior-Independence More Broadly

We only applied prior-independence to revenue-maximizing auction mechanisms.
However, the concept is clearly a general one, and is not limited to mechanism design.

Example 9.1 (Online Matching). As one example, in Mahdian and Yan [58], we
prove that for the classic online matching problem of Karp et al. [53], the RANKING
algorithm gives a prior-independent 0.696-approximation w.r.t. i.i.d. distributions (in
the stochastic matching model of Feldman et al. [31]), which is an improvement over
the 1 − 1

e
≈ 0.632 approximation in worst case [53], and almost matches with the

best known ratio of 0.702 based on prior-dependent approximation by Manshadi et
al. [59].
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Now our question is, for what other problems can prior-independence serve as a
suitable framework? We are certain that there are many potential applications of
prior-independence. However there does not seem to be a unified way of applying
prior-independence, and how prior-independence can be useful for a specific area
domain will necessarily depend on domain-specific knowledge and ideas. On the
other hand, this means there are plenty of opportunities in this direction for future
research.

In general, there is a vast gap between theory and practice of algorithm anal-
ysis. To obtain theoretical guarantees that better reflect practical performance of
algorithms, we need to model inputs to the algorithms in more realistic ways. Prior-
independence seems to be a good general approach in this direction, and we believe
that fruitful results are awaiting discovery.
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