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Abstract

In this paper, we introduce a variant of the Ehrenfeucht-Fräıssé game
from logic which is useful for analyzing the expressive power of classes
of generalized regular expressions. An extension of the game to gen-
eralized ω-regular expressions is also established. To gain insight into
how the game can be applied to attack the long-standing generalized star
height 2 problem, we propose and solve a related but easier problem, the
omega power problem. Namely we show that omega powers, together with
boolean combinations and concatenations, are not sufficient to express the
class of ω-regular languages.

Keywords: split game, EF game, regular expression, star height, omega
power

1 Introduction

It is natural to classify regular languages by star height (see [1] for a historical
survey), which is the minimum nesting depth of stars of a regular expression
representing the language. In the definition of regular expressions, if only union,
concatenation and star are allowed as basic operators (“restricted star height”
in this context), Eggan [2] showed that languages of arbitrary restricted star
height exist, and Hashiguchi [3] showed that the restricted star height of a given
regular language can be computed effectively. If complement is also considered
as a basic operator (which we assume throughout rest of the paper), the notion
of star height (“generalized star height”) seems to be more interesting. It is
known that the star-free languages, i.e. languages of star height 0, have various
characterizations, like having finite aperiodic syntactic monoids [4] or being first
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order logic definable [5], and hierarchies of star-free languages like the dot-depth
hierarchy have also been extensively studied in literature. From these results,
it follows that languages of star height 1 exist (e.g. (aa)∗) and the class of
languages of star height 0 is decidable. However, beyond that, it is still open
if a language of star height > 1 exists! We prefer to state this “star height 2
problem” [6] as an inexpressibility problem:

Star Height 2 Problem: Does there exist a regular language L such that no
regular expression of star height1 ≤ 1 represents L?

Understanding of this problem is important for the even tougher star height
problem, i.e., is there an algorithm that computes the star height of a given
regular language?

The difficulty of the star height 2 problem might come from the fact that the
regular expressions of star height ≤ 1 are surprisingly expressive. In fact most
related work (like [7][8][9][6]) resulted in larger and larger classes of languages
of star height ≤ 1, while eliminating previous candidates for languages of star
height 2. We conjecture that languages of star height 2 exist and what is lacking
is some tool for such inexpressibility results.

In formal logic, the Ehrenfeucht-Fräıssé game has proved to be a powerful
tool for inexpressibility results. It has been successfully applied to the dot-
depth hierarchy [10] within star-free languages. Thomas first showed that the
dot-depth hierarchy corresponds with the quantifier alternation hierarchy of
first-order logic [11]. It follows that the Ehrenfeucht-Fräıssé game [12] can be
applied to give a simpler proof [13][14] for the strictness of the dot-depth hi-
erarchy [15]. Such results gave us a hint. If the star height hierarchy can be
characterized by some natural hierarchy in logic, then one might be able to de-
rive a variant of the Ehrenfeucht-Fräıssé game to solve problems on star height
as well. So Thomas considered a natural hierarchy of regular languages based on
weak monadic second order quantifiers, but the hierarchy was proved to collapse
[11]. Another possibility is from the characterization of regular languages by
FO(mTC) [16], i.e., first order logic equipped with monadic transitive closure
operators. However, mTC operators seem to be too expressive to characterize
stars, as two such operators are sufficient to define arbitrary regular languages2

[19]. For the same reason, the monadic partition logic in [20] is also not suitable.
Although no logical characterization of star height has been found, the star

height problem is more like a logic problem in nature. Recall that regular ex-
pressions have operators ∪,∩ and ∼ (complement), which naturally correspond
with logical connectives ∨,∧ and ¬. So in fact regular expressions can be seen
as the formulas of some special logic. With this idea in mind, we derive a “split
game”, which gives a characterization of the star height hierarchy. It follows

1The star height of a regular expression is the nesting depth of stars in the expression.
2This leaves with one possibility. If one can use the Ehrenfeucht-Fräıssé game for FO(TC)

[17] [18] to show that some regular language cannot be defined by a FO(mTC) formula with
no nesting of mTC operators, then the star height 2 problem is solved. Unfortunately, it is
well-known in finite model theory that games like the ones for FO(TC) are difficult to play
when the structures are ordered (like word structures).
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that separation of the hierarchy is reduced to finding suitable winning strategies
for one of the players in the corresponding game. (However, we don’t yet know
how to use this new approach to solve the star height 2 problem, whose solution
still seems far from reach.) The split game can also be used to give characteri-
zations for some other hierarchies of regular languages, including the dot-depth
hierarchy. In general, it gives rise to a combinatorial method for studying the
expressive power of classes of regular expressions, and obtaining inexpressibility
results.

We also establish an extension of the split game to ω-regular languages (see
[21] for a survey) in order to study the expressive power of the omega power op-
erator, which is also far from being well-understood like the star operator. Using
such an extension, we propose and solve the omega power problem. Namely we
show that omega powers, together with boolean combinations and concatena-
tions, are not sufficient to express the class of ω-regular languages. Besides its
own interest, we argue that this problem can be seen as a simplified version
of the star height 2 problem, and such result might give us some insight for
attacking the star height 2 problem.

1.1 Related Work

After sending the draft of this paper to colleagues, Jean-Eric Pin informed us
that a similar game was proposed by Wolfgang Thomas in an unpublished note.
We thank J.E. Pin for giving us this hint and W. Thomas for providing us that
note. Compared to Thomas’s game, our treatment is somewhat more natural
and general, and our proof of the completeness theorem is much simpler.

2 Regular Expressions and Classes

Fix a finite alphabet Σ, regular languages are built from ∅, {ε} (ε denotes the
empty word) and letter sets {a} (a ∈ Σ) using boolean combination, concate-
nation and star. Correspondingly, regular languages are represented by (gener-
alized) regular expressions, which are built from symbols ∅, ε, a (a ∈ Σ) using
boolean symbols ∪,∩,∼, concatenation dot · and star ∗. Two regular expres-
sions are equivalent if they represent the same language.

The (generalized) star height h(φ) of a regular expression φ is the nesting
depth of stars in φ. E.g., h(((a∗ · b)∗ · c)∗∩ ∼ c∗) = 3. The (generalized) star
height h(L) of a regular language L is the minimum of h(φ) with φ a regular
expression representing L.

Definition 1 For p a finite word over the operator alphabet OP = { ·©, ∗©}, the
expression class (or simply class) C(p) is inductively defined as:

• C(ε) is the closure of the class of basic expressions ∅, ε, a(a ∈ Σ) under
∪,∩ and ∼.

• C( ·©p) is the closure of the class of expressions C(p)∪{φ ·ψ : φ, ψ ∈ C(p)}
under ∪,∩ and ∼.
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• C( ∗©p) is the closure of the class of expressions C(p) ∪ {φ∗ : φ ∈ C(p)}
under ∪,∩ and ∼.

Corollary 2 For φ a regular expression and m ≥ 0, h(φ) ≤ m if and only if φ
is in

∪
n≥0 C(( ·©n ∗©)m ·©n).

A key fact about C(p) is that:

Lemma 3 Every expression class C(p) is finite, up to equivalence.

Proof. We prove by induction on p. Recall that Σ is finite. So C(ε) is finite
up to equivalence. If p = ·©q for some q, then C(p) is generated using booleans
from C(q) and the set {φ · ψ | φ, ψ ∈ C(q)}, both finite up to equivalence by
induction hypothesis. So C(p) is also finite up to equivalence. The case p = ∗©q
is similar.

We adopt the Tarskian notation u |= φ denoting that word u is in the
language represented by expression φ. For u, v ∈ Σ∗ and class C(p), we write
u ≡p v if for every φ ∈ C(p), u |= φ iff v |= φ. We also define the regular
expression χp

u as
∩
{φ ∈ C(p) : u |= φ}. Note that such definition is valid by

Lemma 3. The following lemma states that χp
u characterizes the ≡p equivalence

class of u.

Lemma 4 For every u, v ∈ Σ∗ and class C(p), v |= χp
u iff u ≡p v.

Proof. Clearly if u ≡p v then v |= χp
u. For the converse, assume v |= χp

u. For
every φ ∈ C(p), if u |= φ then φ is a conjunct of χp

u and thus v |= φ. If u 6|= φ,
then ∼ φ is a conjunct of χp

u and thus v |=∼ φ. Together we have u ≡p v.

3 The Split Game

In this section we introduce our split game. Some techniques used in designing
the game are borrowed from the variants of the Ehrenfeucht-Fräıssé game in
logic, e.g. Grädel’s FO(TC) game [17].

Definition 5 For every expression class C(p) and words u, v ∈ Σ∗, in the fol-
lowing we inductively define the game Gp over (u, v), which is played by players
Samson and Delilah with initial configuration (u, v):

• If p = ε, then this is the trivial game where Delilah wins if u ≡ε v (i.e.
either |u|, |v| ≥ 2, or both |u| = |v| ≤ 1 and u = v) and Samson wins
otherwise.

• If p = aq for some a ∈ OP , then Samson can choose to play a split round
if a = ·© or play a ∗-split round if a = ∗©. He can also choose to play
an empty round instead, i.e. to do nothing. After the round is played, the
players continue to play Gq with the updated configuration.
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split round: Samson splits u into u = u1 · u2
3 and then Delilah splits v into

v = v1 ·v2. Next Samson chooses i from 1, 2 and configuration of the game
is updated to (ui, vi). Samson can also choose to play such a round with
u, v interchanged.

∗-split round: Samson splits u into u = u1 · . . . · um for some m ≥ 1 and then
Delilah splits v into v = v1 · . . . · vn for some n ≥ 1. Next Samson chooses
some j from 1 . . . n, and then Delilah responds with some i from 1 . . .m.
Configuration of the game is updated to (ui, vj). Samson can also choose
to play such a round with u, v interchanged.

We write u ∼p v if Delilah has a winning strategy for Gp over (u, v). Note
that Gp is a finite game of perfect information. Exactly one of the players has
a winning strategy. We will assume that players always follow their winning
strategies, if there exist.

Note that in the split game, the words that the games are played on are
repeatedly shortened. In contrast, in the Ehrenfeucht-Fräıssé games (and also
in Thomas’s concatenation games), all the information about the playground
are kept. Such difference is crucial in making our game work.

Lemma 6 For every u, v ∈ Σ∗ and class C(p), u ≡p v if and only if u ∼p v.

Proof. The case p = ε is trivial by definition. Assume that the claim holds for
all proper suffix q of p.

Suppose u 6≡p v. We describe a winning strategy of Samson for Gp over
(u, v). If u 6≡q v for some proper suffix q of p, then Samson can win by first
playing some empty rounds till the Gq game, and then applying his winning
strategy which exists by induction hypothesis. So we assume the minimality
of p, that is u ≡q v for all proper suffix q of p. As u 6≡p v, some φ ∈ C(p)
distinguishes u, v. If φ =∼ ψ1 or ψ1 ∪ψ2 or ψ1 ∩ψ2, then at least one of ψ1, ψ2

(also in C(p)) distinguishes u, v. So we assume that the main operator of φ is
not boolean. W.l.o.g. let u |= φ and v 6|= φ. There are two cases:

φ = ψ1 · ψ2: By the minimality of p, φ is in C(p)\C(q), and so by the definition
of C(p), ψ1, ψ2 are in C(q) with p = ·©q. As u |= ψ1 · ψ2, Samson can
split u into u1 · u2 such that ui |= ψi for each i = 1, 2. As v 6|= ψ1 · ψ2, no
matter how Dilelah splits v into v1 · v2, we have vi 6|= ψi for some i = 1, 2.
Let Samson choose this i. So ui 6≡q vi and he can win the remaining Gq

game over (ui, vi).

φ = ψ∗: Similarly, ψ is in C(q) with p = ∗©q. As u |= ψ∗, Samson can split u
into u1 · . . . · um such that ui |= ψ for each 1 ≤ i ≤ m. As v 6|= ψ∗, no
matter how Delilah splits v into v1 · . . . · vn, we have vj 6|= ψ for some
1 ≤ j ≤ n. Let Samson choose this j. Whichever i Delilah chooses,
ui |= ψ. So ui 6≡q vj and Samson can win the remaining Gq game over
(ui, vj).

3We use dots to indicate how words are split. Other dots are usually omitted.
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Suppose u ≡p v. We describe a winning strategy of Delilah. Let p = aq for
some a ∈ OP . There are three cases, depending on the type of the first round
played in Gp:

empty round: u ≡p v implies u ≡q v, and so Delilah can win the remaining
Gq game.

split round: So p = ·©q. Assume that Samson splits u into u1 · u2. Consider
φ = χq

u1
·χq

u2
in C(p). Clearly u |= φ. As u ≡p v, v |= φ too. Then Delilah

can split v into v1 · v2 such that v1 |= χq
u1

, v2 |= χq
u2

. Whichever i Samson
chooses, ui ≡q vi by Lemma 4 and Delilah can win the remaining Gq game
over (ui, vi).

∗-split round: So p = ∗©q. Assume that Samson splits u into u1 · . . . · um.
Consider φ =

∪
m
i=1χ

q
ui

in C(q). Clearly u |= φ∗. As u ≡p v, v |= φ∗

too. Then Delilah can split v into v1 · . . . · vn such that vj |= φ for each
1 ≤ j ≤ n. Whichever j Samson chooses, vj |= χq

ui
for some 1 ≤ i ≤ m.

Let Delilah respond with this i. So ui ≡q vj and she can win the remaining
Gq game over (ui, vj).

Theorem 7 For every language L and class C(p), the following are equivalent:

(i) No regular expression in class C(p) represents L.

(ii) There exist u ∈ L, v /∈ L such that Delilah has a winning strategy for Gp

over (u, v).

Proof. (ii)=⇒(i). Suppose ¬(i) and let φ ∈ C(p) represent L. So φ distinguishes
u, v and u 6≡p v. By Lemma 6, Samson can win Gp over (u, v), contradiction.

(i)=⇒(ii). Suppose ¬(ii). Consider φ =
∪
{χp

u | u ∈ L} in C(p) (this defini-
tion is valid by Lemma 3). For each u ∈ L, clearly u |= φ. Conversely, for each
v ∈ Σ∗, if v |= φ, then v |= χp

u for some u ∈ L. Thus u ≡p v and Delilah can win
Gp over (u, v). So v ∈ L, or otherwise (ii) is satisfied. Therefore φ represents L,
contrary to (i).

Together with Corollary 2, we have the following characterization of star
height.

Theorem 8 For a regular language L, the following are equivalent:

(i) The star height of L is strictly greater than m.

(ii) For each n ≥ 0, there exist un ∈ L, vn /∈ L such that Delilah has a winning
strategy for Gp over (un, vn), where p = ( ·©n ∗©)m ·©n.

The definitions of C(p) and Gp can in fact be refined, by considering ∼ as a
nontrivial operator. So ∼© is added into OP and swap rounds are introduced in
which u, v are swaped. With appropriate modifications, languages of dot-depth
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[10] m are characterized by
∪

n≥0 C((∼© ·©n)m−1) and thus can be characterized
by the split game. Another way to characterize dot-depth is to introduce n-
splits like in Thomas’s concatenation game [14]. In general, the split game can
be tailored like the Ehrenfeucht-Fräıssé game for specific purposes.

To compare to Thomas’s concatenation game [14] in the context of the dot-
depth hierarchy, the split game is simpler to use, since fractions of the words
irrelevant to future rounds of the game are discarded immediately. Particularly,
the split game can help to simplify the presentation of the proof of the strictness
of the dot-depth hierarchy in [14].

4 Playing the Game

We are interested in attacking the star height 2 problem using the split game.
But what we can give now is just a possible route. By Theorem 8, the problem
is reduced to finding for each n two words un, vn distinguished by some fixed
regular language such that un ∼p vn where p = ·©n ∗© ·©n. For such purpose,
we need to first investigate how to construct words that are ∼n,∼∗,n and ∼n,∗,n

equivalent step by step. Here ∼n,∼∗,n and ∼m,∗,n are aliases for ∼p when
p = ·©n, ∗© ·©n and ·©m ∗© ·©n respectively.

Fix n, and set constant Tn to be 2n+1. For word w ∈ Σ∗, we say wm is in the
form w≥k if m ≥ k. For letter a ∈ Σ, we say am is in the form ã if m ≥ Tn. The
facts below have already appeared in different forms in literature (e.g. [14][22]).

Lemma 9 (i) For letter a ∈ Σ, words in the form ã are ∼n equivalent.

(ii) For word w ∈ Σ∗, words in the form w≥Tn are ∼n equivalent.

(iii) For u, v, u′, v′ ∈ Σ∗, if u ∼n v and u′ ∼n v′, then uu′ ∼n vv′. In other
words, ∼n is a congruence relation.

Proof. For (i), we prove by induction on n that ax ∼n ay if x, y ≥ Tn. The
case n = 0 and the case that Samson first plays an empty round are both
easy. Assume n > 0, x, y ≥ Tn, and Samson splits ax into al · ar. Let l ≤ r,
then Delilah can split ay into amin(l,Tn−1) · ay−min(l,Tn−1). Note that r ≥ Tn−1,
y−min(l, Tn−1) ≥ Tn−1 and so ar ∼n−1 ay−min(l,Tn−1) by induction hypothesis.
One can also easily show that al ∼n−1 amin(l,Tn−1). Thus Delilah can win the
remaining game.

(ii) follows from a slightly generalized argument of the proof of (i).
For (iii), we prove by induction on n. The case n = 0 is trivial. Suppose

that Samson splits uu′ into u1 · u2u
′. Since u ∼n v, Delilah can split vv′ into

v1 · v2v
′ such that u1 ∼n−1 v1 and u2 ∼n−1 v2. Clearly u′ ∼n−1 v′, and so

u2u
′ ∼n−1 v2v

′ by induction hypothesis. Then clearly Delilah can win the
remaining game.

Obviously it is quite flexible to construct words that are ∼n equivalent. For
example, for fixed l, r, all words in the form alb(ãb)≥Tnar are ∼n equivalent.
Such results will be used freely in the rest of the paper.
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For the ∼∗,n relation, equivalent words are much more difficult to construct.
In fact even the following problem is open. As split rounds are easier for Delilah
to play than ∗-split rounds, once we can solve this problem, a solution to the
star height 2 problem might be quite near.

Problem 10 Does there exist a regular language L such that no regular expres-
sion in

∪
n≥0C( ∗© ·©n) represents L?

5 An Extension to ω-Regular Languages

In this section, we establish an extension of the split game to ω-regular lan-
guages. This enables us to study the expressive power of the omega power
operator by the split game. Concatenation hierarchies for infinite words [23]
can also be studied by variants of such extension.

Fix Σ, an ω-word over Σ is an infinite sequence of letters from Σ: a1a2 . . ..
The set of all ω-words over Σ are denoted by Σω. A subset of Σω is called an ω-
language. The class of (generalized) ω-regular expressions, which represents ω-
regular languages (see [21] for a survey), is the closure of the class of expressions
{φω : φ is a regular expression} ∪ {∅} under boolean combination (w.r.t. Σω)
and left concatenation with a regular expression. Here φω, the omega power of φ,
represents the ω-language {u1u2 . . . | ui |= φ and ui 6= ε, for i ≥ 1} and for φ a
regular expression and ψ an ω-regular expression, φ ·ψ, the left concatenation of
ψ with φ, represents the ω-language {uv ∈ Σω : u |= φ, v |= ψ, u ∈ Σ∗, v ∈ Σω}.

For example, consider the expression ((a ·a)∪ b)ω∩ ∼ ((∼ ∅) · b ·a · (∼ ∅)). A
more intuitive way to write this expression is (aa ∪ b)ω\(Σ∗baΣω). (Note that
concatenation and left concatenation share the same · symbol. Also complement
w.r.t. Σ∗ and complement w.r.t. Σω share the same ∼ symbol. But the meaning
of a symbol is clear from context, and no ambiguity will arise.) A little thought
shows that it is equivalent to (aa)∗bω. In fact one can show that this ω-language
cannot be represented by an ω-regular expression without the use of any star
or omega power operator.

Let OPω = OP ∪ {ω©}. Expression class Cω(p) is defined similarly for every
finite word p over OPω if p has at most one occurrence of ω© only and no
∗© precedes any ω©. Here Cω( ω©p) is the closure of the class of expressions
C(p) ∪ {φω : φ ∈ Cω(p)} under ∪,∩ and ∼.

For an ω-word α, an ω-split U of α is an infinite sequence of finite words
u1, u2, . . . such that α = u1 · u2 · . . . with each ui in Σ∗\{ε}. We also regard U
as the set {ui : i ≥ 1}.

For every class Cω(p) and u, v ∈ Σ∗ ∪ Σω, we can correspondingly modify
Definition 5 to define Gω

p over (u, v), if u, v are either both in Σ∗ or are both in
Σω. With the following modifications, an analogue of Theorem 7 can be verified
easily:

• Samson has to play an empty round, if a = ∗© and u, v are ω-words or if
a = ω© and u, v are finite words.



6 THE OMEGA POWER PROBLEM 9

• In a split round, if u, v ∈ Σω, players can split each of them into the left
concatenation of a finite word and an ω-word, i.e., u2, v2 are allowed to be
ω-words.

• If p = ω©q, and u, v ∈ Σω, Samson can choose to play an ω-split round in
which:

ω-split round: Samson ω-splits u into u = u1 · u2 · . . . and then Delilah
ω-splits v into v = v1 · v2 · . . .. Next Samson chooses some j ≥ 1 and
then Delilah responds with some i ≥ 1. Configuration of the game
is updated to (ui, vj). Samson can also choose to play such a round
with u, v interchanged.

Theorem 11 For every ω-language L and class Cω(p), the following are equiv-
alent:

(i) No expression in Cω(p) represents L.

(ii) There exist u ∈ L, v /∈ L such that Delilah has a winning strategy for Gω
p

over (u, v).

6 The Omega Power Problem

6.1 The Problem

We propose to consider the following problem, which we will solve in the next
subsection:

Omega Power Problem: Is every ω-regular language representable by some
ω-regular expression in the set Eω =

∪
n≥0 Cω( ·©n ω© ·©n)?

In other words, this problem asks if omega powers, together with boolean
combinations and concatenations (including left concatenations), but without
stars, are sufficient to express the class of ω-regular languages. This problem
itself is interesting. Previously we don’t really have a good understanding of
the power of omega power. On the other hand, this problem is also somewhat
related to the star height 2 problem.

Recall that the star height 2 problem asks if every regular language is rep-
resentable by some expression in

∪
n≥0 C( ·©n ∗© ·©n). So by definition these two

problems are very similar. A negative solution to the omega power problem
would also follow the similar steps as described at the beginning of Section 4.
Also, the rules for playing the ∗-split rounds and the ω-split rounds are quite
similar. So there can be some common strategies for playing the games.

Some readers might think that the omega power problem is easy to solve un-
like the star height 2 problem. They might consider proving that ω-languages
like (aa)∗bω are not representable in Eω. Apparently, (aa)∗ is not equivalent
to any expression without a star and so the use of star seems to be inevitable.
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However, this is not true. As illustrated in Section 5, (aa)∗bω is in fact rep-
resentable in Eω by clever use of negations. In general, the class Eω is very
expressive because of the existence of negations. This is similar to that the
class of expressions of star height ≤ 1 is surprisingly expressive.

There is another interesting way to look at these two problems. Finite words
are words with both left and right ends, while ω-words are words without right
ends. So loosely speaking, the omega power problem can be seen as a “right
ends removed” version of the star height 2 problem. By such “removal” of right
ends, we obtain a simpler and managable problem because abilities like modulus
counting [8] of regular expressions are weakened.

Of couse, a solution to the omega power problem would rely on some prop-
erties that only ω-languages have. But we might still learn strategies for playing
the game from such a solution, which can be useful for attacking the star height
2 problem.

6.2 The Proof

In this subsection, we settle the omega power problem negatively.
Let n ≥ 0 be fixed. Similar to the star height 2 problem, it suffices to

construct ω-words αn, βn distinguished by some fixed ω-regular language with
αn ∼n,ω,n βn. Here notations u ∼n v, u ∼ω,n v and u ∼m,ω,n v are introduced
like in Section 4, with the associated games called (n)-game, (ω, n)-game and
(m,ω, n)-game respectively. Note that the ∼n relation here extends the ∼n

relation in Section 4 by allowing u, v to be ω-words.
We focus on the (ω, n)-game over (α, β) with α, β in the form aLb(a≥Pnb)ω

for some fixed L. Here Pn = Qn + 3Tn where Tn = 2n+1 as before and Qn is
from the following lemma which can be easily proved using elementary number
theory.

Lemma 12 For each n ≥ 0, there is an integer Qn such that for each subset
{m1, . . . ,mq} of {1, 2, . . . , Tn − 1} with greatest common divisor d, for each r
a multiple of d, if r ≥ Qn, then r is equal to a sum Σq

i=1kimi with each ki a
nonnegative integer.

If Samson does not start with an ω-split round, clearly α, β are ∼n equivalent
and Delilah can win. So w.l.o.g. we assume that Samson first makes an ω-split
U : u1 · u2 · . . . of α.

We classify the words in U into types. For a word in U in the form
alb(ãb)mar, we say it is of type tltmtr, where tl (or tm, tr, respectively) is 1
if l (or m, r, respectively) ≥ Tn, and 0 otherwise. A word in U in the form am

is of type 1 if m ≥ Tn and 0 otherwise. All types are exhausted in this list:
0, 000, 0?1, 010, 1, 1??, where ? means either 0 or 1. We use IU to denote the
smallest i such that ui is not a 0 word.

Normal ω-Splits We say U is normal if it contains no word of type 1 or
1?? and it contains at least one 0 word. If U ’s normal, U ’s characteristic is the
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greatest common divisor of the lengths of U ’s 0 words. We first prove that if
U is not normal, then Delilah can win the remaining (n)-game, and so we can
assume that U is always normal.

Suppose U is not normal. There are three cases: (1) Some 1?? word in the
form ãb(ãb)mar is in U . u1 . . . uIU must be in the form at1 , . . . , atq , al1b(ãb)m1ar1

with q ≥ 0. Then Delilah can win by ω-splitting β into the form at1 · . . . ·
atq · al1b(ãb)m1amin(r1,Tn) · ãb(ãb)mamin(r,Tn) · ãb(ãb)mamin(r,Tn) · . . .. (2) Some
1 word is in U . Then Delilah can win by ω-splitting β into the form at1 ·
. . . · atq · al1b(ãb)m1amin(r1,Tn) · ã · amin(l1,Tn)b(ãb)m1amin(r1,Tn) · ã · . . .. (3) U
does not contain a 0 word. Assume (1) and (2) do not hold. Then as each a
segment(except the first) of α has length ≥ Pn except the first, every ui must
be a 0?1 word. So u1 is in the form aLb(a≥Pnb)mã and Delilah can win by
ω-splitting β into words all in such form.

Jumping Automata After Samson makes a normal ω-split U of α, if Delilah
can win by an ω-split V of β such that each word in V is ∼n equivalent to some
0 or 000 word in U , we say that Delilah has a fine win. When can Delilah have
a fine win? It turns out that if L is large enough, then this can be decided by a
jumping automaton induced from U . Such idea is made precise in Lemma 15.

Definition 13 For each normal ω-split U with characteristic Z, its associated
(nondeterministic) jumping automaton A is the tuple (ΣZ , S, s0, ∆) with alpha-
bet ΣZ = {0, 1, . . . , Z − 1}, state set S = ΣZ × {0, 1, . . . , Tn − 1}, initial state
s0 = 〈0, 0〉 and ∆ ⊆ S ×ΣZ × S the transition relation such that: for every 000
word in U , say in the form alb(ãb)mar, ∆ contains:

• 〈〈r′, 0〉, (r′ + l)mod Z, 〈r mod Z,m〉〉 for every 0 ≤ r′ < Z

• 〈〈r mod Z, t + 1〉, k, 〈r mod Z, t〉〉 for every k ∈ ΣZ and 0 ≤ t < m.

For a finite word k0k1 . . . kl−1 of length l or an ω-word k0k1 . . . of length
l = ∞, a run of A over the word is a state sequence q0q1 . . . ql ∈ S∗ or an infinite
state sequence q0q1 . . . ∈ Sω, respectively, such that q0 = s0 and 〈qi, ki, qi+1〉 ∈
∆ for all 0 ≤ i < l.

Definition 14 For a word u = am0b . . . bamt−1bamt over Σ, the Z-signature
of u is the word over ΣZ : sigZ(u) = (m0 mod Z)(m1 mod Z) . . . (mt−1 mod Z).
sigZ(u) for u an ω-word is defined similarly. Conversely, for a word k0 . . . kl−1

over ΣZ , wrdZ(k0 . . . kl−1) is an arbitrary word w in the form (a≥Pnb)l such
that sigZ(w) = k0 . . . kl−1.

Lemma 15 In an (ω, n)-game over (α, β), with α, β in the form a≥Pn−Tnb(a≥Pnb)ω,
if U : u1 · u2 · . . . is a normal ω-split of α of characteristic Z by Samson and
A is the associated jumping automaton, then Delilah has a fine win iff A has a
run over sigZ(β).
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Proof. Only If. Suppose Delilah has a fine win, then β can be ω-split into the
form (1) below such that for each i, U has a 000 word in the form alib(ãb)miari .
The Z-signature of β is as in (2), and a run of A over sigZ(β) can be constructed
correspondingly as in (3). Here we write p

k−→ q to denote that state p goes
to q by reading k, and 〈r,m〉 → 〈r, 0〉 is a short hand for the state sequence
〈r,m〉, 〈r,m − 1〉, . . . , 〈r, 0〉.

(1) β : (aZ)∗ · al1b(ãb)m1ar1 · (aZ)∗ · al2b(ãb)m2ar2 · (aZ)∗ · . . .

(2) sigZ(β): l1 mod Z, . . . , (r1 + l2)mod Z, . . . , (r2 + l3) mod Z, . . .

(3) ρ: 〈0, 0〉 l1 mod Z−→ 〈r1, m1〉 −→ 〈r1, 0〉
(r1+l2) mod Z−→ 〈r2,m2〉 −→ 〈r2, 0〉 . . .

If. Suppose there is a run ρ of A in the form of (3) over sigZ(β), then by
definition of jumping automata one can conversely ω-split β into the form of
(1) such that for each i, U has a 000 word in the form alib(ãb)miari . As to the
words in the form (aZ)∗, each of them has length ≥ Qn and thus by Lemma 12
can be further split into 0 words from U . So Delilah has a fine win.

Let JU denote the smallest i such that ui is of type 010 or 0?1. JU is ∞ if
no such i exists. The fine part of α with respect to U is the prefix u1 . . . uJU−1,
or simply α itself if JU = ∞. Note that α’s fine part has been split (or ω-split)
into 0 and 000 words of U . An argument similar to the Only If direction of the
above proof can be applied to show that A has a run over the Z-signature of
α’s fine part.

Winning the (ω, n)-Game We apply jumping automata to construct ∼ω,n

equivalent words. Roughly speaking, for an (ω, n)-game over (α, β) in which
Samson makes a normal ω-split of α first, we show that if α has a sufficiently
complex subword contained in the fine part of α, then the associated jumping
automaton, which has a run over the signature of the fine part of α, would be
confused, and then has a run over the signature of β. Then Delilah can win.

For a jumping automaton A associated to some normal ω-split U with char-
acteristic Z, and a Z-signature j1 . . . jp, we say that w ∈ {a, b}∗ has the all-
or-none property with respect to A and j1 . . . jp, if either A has no run over
j1 . . . jpsigZ(w) or for every infinite Z-signature in the form j1 . . . jpsigZ(w)k1k2 . . .,
A has a run.

Lemma 16 There exists wn such that: (1) for every normal ω-split U , say with
characteristic Z and associated jumping automaton A, for every Z-signature
j1 . . . jp, wn satisfies the all-or-none property w.r.t. A, j1 . . . jp. (2) wn is in the
form (a≥Pnba≥Pnb)≥T2n .

Proof. First one can easily verify that if w has the all-or-none property w.r.t.
A, j1 . . . jp, then for every v ∈ Σ∗, wv also has the all-or-none property w.r.t.
A, j1 . . . jp. Initially we set wn = ε, we will gradually append words to obtain
the desired wn.
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Let A be an jumping automaton associated to some normal ω-split U with
characteristic Z. Jumping automata are in fact a special kind of looping au-
tomata [24], which can be determinized using subset construction. So we assume
here that A is deterministic. For a state s of A, we say that w has the all-or-none
property w.r.t. A and s, if either A has no run starting from s over sigZ(w), or
for every Z-signature in the form sigZ(w)k1k2 . . ., A has a run from s over it.

If wn does not satisfy the all-or-none property w.r.t. A, s, then there is no
run of A from s over some sigZ(wn)k1k2 . . .. Thus A has no run from s over
sigZ(wn)k1 . . . kq for some q ≥ 0. Set wn to be wnwrdZ(k1 . . . kq) and then
wn satisfies the all-or-none property w.r.t. A, s. Repeat this for every state
s of A. Now for every Z-signature j1 . . . jp, let s be the state A reaches after
reading j1 . . . jp (the case that A has no run over j1 . . . jp is trivial). Then the
all-or-none property of wn w.r.t. A, j1 . . . jp follows from its all-or-none property
w.r.t. A, s.

Repeat the above for every jumping automaton A associated to some normal
ω-split and then (1) is satisfied. Note that the characteristic of a normal ω-split
is bounded by Tn and so there are only finitely many such automata.

As to condition (2), we can simply append enough wrd2(0)’s to wn to make
it into the desired form.

We say an ω-word γ in the form (a≥Pnb)ω has the richness property if for
all x,Z with 0 ≤ x < Z < Tn, there are infinitely many subwords of γ in the
form b(aZ)∗axb.

Lemma 17 For every v in the form aLb(a≥Pnb)∗, and γ1, γ2 ∈ (a≥Pnb)ω having
the richness property, vw′

nγ1 ∼ω,n vw′
nγ2, where w′

n = wrd2(0)Tnwn.

Proof. Let α = vw′
nγ1 and β = vw′

nγ2. As before, it suffices to consider the
(ω, n)-game over (α, β) in which Samson first makes a normal ω-split U of α
with characteristic Z.

Case 1: vw′
n is a prefix of the fine part of α. Note that vw′

n contains
u1 . . . uIU

as prefix. So uIU
is a 000 word. Let α′ and β′ be such that α =

u1 . . . uIU
α′, β = u1 . . . uIU

β′. So α′, β′ are both in the form a≥Pn−Tnb(a≥Pnb)ω.
Note that U ′ : uIU+1 ·uIU+2 · . . . is a normal ω-split of α′ and so A has a run over
the Z-signature of the fine part of α′ w.r.t. U ′. Note that vwrd2(0)Tn contains
u1 . . . uIU as prefix, α′ = u′wn . . . for some u′. So u′wn is a prefix of the fine
part of α′ and A also has a run over sigZ(u′wn). Note that β′ = u′wn . . . and
thus by the all-or-none property of wn, A has a run over sigZ(β′). By Lemma
15, β′ can be ω-split into words ∼n equivalent to ones from U ′. Together with
u1 · . . . · uIU , these constitute a winning ω-split of β for Delilah.

Case 2: the fine part of α is a proper prefix of xw′
n. Let u′ be such that

u1 . . . uJU−1u
′ = xw′

n. One can show that Delilah can win by splitting the
u1 . . . uJU−1 part of β as Samson did and ω-splitting the rest part into words
∼n equivalent to uJU and 0 words from U . There are two subcases. (1) uJU is a
0?1 word in the form alb(ãb)mã. u′γ2 is in the form alb(ãb)ω, and then can be
ω-split into the form alb(ãb)mã · alb(ãb)mã · . . .. Together with u1 · . . . · uJU−1,
these constitute a winning ω-split of vw′

nγ2 for Delilah. (2) uJU
is a 010 word



REFERENCES 14

in the form alb(ãb)≥Tnar. By the richness property of γ2, γ2 can be ω-split into
the form (ãb)≥Tnbar · (aZ)∗ · alb(ãb)≥Tnar · (aZ)∗ · alb(ãb)≥Tnar · . . .. , then u′γ2

can be ω-split into words in the form alb(ãb)≥Tnar, which are ∼n equivalent
to uJU

, and words in the form (aZ)∗. As each such (aZ)∗ word has length
≥ Qn, by Lemma 12, it can be further split into 0 words from U . Together with
u1 · . . . · uJU−1, these constitute a winning ω-split of vwnγ2 for Delilah.

Finally we turn to play the (n, ω, n)-game, and complete our proof.

Lemma 18 Let γ have the richness property, then for all x, y ≥ 3m and u ∈ Σ∗,
α = u(wrd2(0)w′

n)xγ and β = u(wrd2(0)w′
n)yγ are ∼m,ω,n equivalent.

Proof. We prove by induction on m. The case m = 0 follows from Lemma 17.
First suppose that Samson splits α into u(wrd2(0)w′

n)lv · v′(wrd2(0)w′
n)rγ for

some l + r + 1 = x and vv′ = wrd2(0)w′
n. If l < r, then Delilah splits β into

u(wrd2(0)w′
n)lv ·v′(wrd2(0)w′

n)y−l−1γ. Both r ≥ 3m−1, y− l−1 ≥ 3m−1 and by
induction hypothesis Delilah can win the remaining (m−1, ω, n)-game. If l ≥ r,
then Delilah splits β into u(wrd2(0)w′

n)y−r−1v · v′(wrd2(0)w′
n)rγ. Since the

players are not allowed to ω-split finite words, the remaining (m−1, ω, n)-game
over (u(wrd2(0)w′

n)lv, u(wrd2(0)w′
n)y−r−1v) is in fact an (m − 1 + n)-game.

Recall wn is in the form (ãb)≥T2n . Both words are in the form u(ãb)≥Tm−1+nv
and Delilah can win the remaining (m−1+n)-game. For the cases that Samson
splits α at the u part or the γ part, one can easily show that Delilah can win
by a split at the similar position of β.

We say γ ∈ Σω in the form (a≥Pnb)ω has the odd-odd property if for all k ≥ 1,
the k-th a segment is of odd length iff k is odd. It is easy to construct γn which
satisfies both the richness property and the odd-odd property. Define αn =
(wrd2(0)w′

n)3
n+1γn and βn = (wrd2(0)w′

n)3
n

γn, which are ∼n,ω,n equivalent by
Lemma 18. Recall that wn (and w′

n) has an even number of b’s, one can verify
that αn and βn are distinguished by the ω-language (a∗ba∗b)∗((aa)∗b(aa)∗ab)ω.
Thus we have completed the proof.

Theorem 19 There exists an ω-regular language L such that no ω-regular ex-
pression in class

∪
n≥0 Cω( ·©n ω© ·©n) represents L.
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Institut für Informatik u. Prakt. Math., Universität Kiel (1994).



REFERENCES 16

[20] E. Shen, Q. Tian, Monadic partition logics and finite automata, Theor.
Comp. Sci. 166 (1-2) (1996) 63–81.

[21] W. Thomas, Automata on infinite objects, in: J. van Leeuwen (Ed.), Hand-
book of Theoretical Computer Science, Vol. B, Formal models and seman-
tics, Elsevier, 1990, pp. 133–191.

[22] W. Thomas, Languages, automata and logic, in: A. Salomaa, G. Rozenberg
(Eds.), Handbook of Formal Languages, Vol. 3, Beyond Words, Springer-
Verlag, Berlin, 1997.

[23] D. Perrin, J.E. Pin, First order logic and star free sets, J. Comput. Syst.
Sci. 32 (1986) 393–406.

[24] M. Vardi, P. Wolper, Reasoning about infinite computations, Inf. Comput.
115 (1) (1994) 1–37.


