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ABSTRACT
In a seminal paper, Karp, Vazirani, and Vazirani [9] show
that a simple ranking algorithm achieves a competitive ratio
of 1 − 1/e for the online bipartite matching problem in the
standard adversarial model, where the ratio of 1−1/e is also
shown to be optimal. Their result also implies that in the
random arrivals model defined by Goel and Mehta [6], where
the online nodes arrive in a random order, a simple greedy
algorithm achieves a competitive ratio of 1−1/e. In this pa-
per, we study the ranking algorithm in the random arrivals
model, and show that it has a competitive ratio of at least
0.696, beating the 1 − 1/e ≈ 0.632 barrier in the adversar-
ial model. Our result also extends to the i.i.d. distribution
model of Feldman et al. [5], removing the assumption that
the distribution is known.

Our analysis has two main steps. First, we exploit cer-
tain dominance and monotonicity properties of the ranking
algorithm to derive a family of factor-revealing linear pro-
grams (LPs). In particular, by symmetry of the ranking
algorithm in the random arrivals model, we have the mono-
tonicity property on both sides of the bipartite graph, giving
good “strength” to the LPs. Second, to obtain a good lower
bound on the optimal values of all these LPs and hence
on the competitive ratio of the algorithm, we introduce the
technique of strongly factor-revealing LPs. In particular, we
derive a family of modified LPs with similar strength such
that the optimal value of any single one of these new LPs is a
lower bound on the competitive ratio of the algorithm. This
enables us to leverage the power of computer LP solvers to
solve for large instances of the new LPs to establish bounds
that would otherwise be difficult to attain by human analy-
sis.
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1. INTRODUCTION
Bipartite matching is among the most fundamental prob-

lems in combinatorial optimization. This is the problem that
a match-maker faces when matching a group of boys with a
group of girls subject to compatibility constraints given by
a bipartite graph, and the goal is to maximize the number
of matched pairs. The online version of this problem also
has many applications, from matching patients and donated
organs to allocating online advertisement space [9, 15, 4,
11]. The main focus of this paper will be on online bipartite
matching.

Karp, Vazirani and Vazirani [9] were the first to formulate
the online bipartite matching problem. In their model, the
nodes on one side of the bipartite graph (say boys) arrive
online with the incident edges, and must be matched upon
their arrivals (to the girls), if possible. Karp, Vazirani, and
Vazirani [9] showed that the following simple randomized al-
gorithm achieves a competitive ratio of 1−1/e: rank all girls
randomly according to a random permutation, and whenever
a boy arrives, match him to the highest-ranked available girl
who is connected to the boy (i.e., is compatible with him).
The competitive ratio of 1−1/e means that even if an adver-
sary determines the order of the boys’ arrivals, the expected
number of matched pairs under this algorithm is at least
1 − 1/e ≈ 0.632 times the number of pairs that an offline
algorithm with the full knowledge of the input would match.

Worst-case analysis in the adversarial model often leads
to over-pessimistic results. Goel and Mehta [6] proposed to
study the random arrivals model, where the boys arrive in
a random order rather than an adversarial order. This as-
sumption smooths out certain bizarre worst-case examples,
while still being much weaker than an i.i.d. distribution as-
sumption that is common in average-case analysis. It turns
out that the result of [9] also shows that in the random ar-



rivals model, the greedy algorithm that simply matches each
boy to the first available compatible girl (if one exists) ac-
cording to a fixed tie-breaking rule achieves a competitive
ratio of 1 − 1/e. A natural question that was left open is
whether the any algorithm can achieve a competitive ratio
better than 1 − 1/e in the random arrivals model. Our pa-
per answers this question affirmatively, and the algorithm is
simply the ranking algorithm.

We prove that the competitive ratio of the ranking algo-
rithm in the random arrivals model is at least 0.696. In ad-
dition to answering a natural theoretical question, our result
strengthens the result of Feldman et al. [5] and the follow-up
work by Manshadi et al. [14]. Feldman et al. [5] show that
when each boy is sampled i.i.d. from a known distribution,
there is an online algorithm that achieves a ratio of 0.67.
This ratio was recently improved to 0.702 by Manshadi et
al. [14]. Compared to Manshadi et al. [14], we get a slightly
worse factor (0.696), but without the assumption that the
algorithm has prior knowledge of the distribution. Further-
more, the ranking algorithm is significantly simpler than the
algorithms in [5, 14].

Our Technique.
Our proof is based on a twist on the idea of using factor-

revealing linear programs (LPs). We start by forming a fam-
ily of exponential size factor-revealing LPs based on a dom-
inance property and a monotonicity property of the ranking
algorithm, such that the infimum of the optimal values of the
LPs in this family would be a lower bound on the competi-
tive ratio of the algorithm. These two properties have been
used previously to prove the competitive ratio of 1− 1/e for
the ranking algorithm in the adversarial setting, or for the
greedy algorithm in the random arrivals model. Our LPs
utilize monotonicity property from both sides of the bipar-
tite graph, which gives good strength to the LPs to beat
1− 1/e.

Next, we relax these exponential size LPs into a family
of polynomial size LPs. To analyze the infimum of the
solutions of these polynomial size LPs, we form a related
family of LPs, which we call strongly factor-revealing LPs,
and prove that the optimal value of any single one of these
LPs is a lower bound on the competitive ratio. This en-
ables us to use a computer LP solver to solve large instances
of the strongly factor-revealing LPs numerically, and ob-
tain good lower bounds for the competitive ratio. Note
that whereas for standard factor-revealing LPs, computer
LP solvers merely provide guidance for the human-generated
proof [7], in our case the solution produced by the LP solvers
is actually part of the proof. Despite its simplicity, this is a
powerful trick for analyzing factor-revealing LPs and has ap-
plications beyond the present problem. For example, in [12]
we have used this technique to significantly simplify and in
some cases improve the analysis of the factor-revealing LPs
used to bound the approximation factor of facility location
algorithms in [7, 13].

Related Work.
Mehta et al. [15] formulated a generalization of the on-

line bipartite matching problem motivated by allocating on-
line advertisement space, sparking renewed attention to this
problem in the theory community. Goel and Mehta [6] used

factor-revealing LPs to give a simpler proof for the competi-
tive ratio of greedy for this generalization in the random ar-
rivals model, and corrected a mistake in the original proof of
Karp, Vazirani, and Vazirani [9] (originally found by Krohn
and Varadarajan [10]). Birnbaum and Mathieu [3] gave a
significantly simpler proof for the online matching problem
using a direct charging argument, and Aggarwal et al. [1]
took this result one step further by proving a 1− 1/e bound
for the vertex-weighted version of online bipartite matching.

Feldman et al. [5] were the first to give an algorithm with a
competitive ratio better than 1−1/e in a model where nodes
on one side of the graph arrive i.i.d. according to a known
distribution with integral arrival rates. Their algorithm cru-
cially uses the prior knowledge of this distribution in order
to pre-compute matchings that guide the online assignment.
In follow-ups to this work, Manshadi et al. [14] gave an al-
gorithm with an improved competitive ratio of 0.702 for ar-
bitrary arrival rates, and Bahmani and Kapralov [2] also
proved several upper bounds in this model.

Simultaneously and independently of this work, Karande,
Mehta, and Tripathi [8] proved that the ranking algorithm
has an approximation ratio better than 1 − 1/e in the ran-
dom arrivals model. They prove a bound of 0.653 for gen-
eral graphs, and a bound of 1 − o(1) for graphs that have
ω(1) disjoint perfect matchings. They also give a family of
examples which shows that the ranking algorithm has an
approximation factor no better than 0.727 in the random
arrivals model. This shows that our 0.696 bound is at most
0.031 away from the best possible.

2. PRELIMINARIES

Setting.
We have an undirected bipartite graph G = (L,R,E) with

n girls 1, . . . , n as left hand side nodes and n boys 1, . . . , n
as right hand side nodes. An edge of the graph indicates
whether a girl and a boy can be matched to each other. The
graph is not revealed to us in advance. We assume that
the girls are fixed, and the boys arrive online. Upon the
arrival of a boy, the edges incident to the boy are revealed,
and the algorithm must match the boy to an unmatched girl
immediately, if possible. Note that the assumption that the
number of nodes on the two sides are equal is without loss of
generality, since the smaller side can always be padded with
isolated nodes. We denote the order of arrival of the boys
by a permutation π of [n] := {1, . . . , n}, i.e., π(r) is the r-th
boy that arrives. We also say that boy π(r) has rank r.

Following the possibly confusing convention of the litera-
ture, we assume that a smaller rank number means a higher
rank. E.g., 1 is the highest rank, and n is the lowest rank.

Competitive Analysis: Adversarial vs Random.
We evaluate an online algorithm by comparing the (ex-

pected) number of pairs it matches against the maximum
matching. This is often done in an adversarial model, i.e.,
assuming that the input graph G and the order of arrivals
of the boys are picked by an adversary, and the worst-case
ratio between the expected size of the algorithm’s solution
and the size of the optimal matching is called the competitive
ratio of the algorithm. More formally, let MM(G) denote



the size of the maximum matching in G. An algorithm has
competitive ratio α (0 ≤ α ≤ 1) if the expected size of the
matching it produces is at least α · MM(G) for every bi-
partite graph G and every ordering π of boys’ arrivals. A
less strict model is the random arrivals model. In this model
the ordering π of the boys’ arrivals is assumed to be a ran-
dom permutation of [n]. An algorithm has competitive ratio
α in the random arrivals model if the expected size of the
matching it produces is at least α ·MM(G) for every bipar-
tite graph G, where the expectation is over the random coin
flips of the algorithm as well as the random choice of the
arrival order π.

The Greedy Algorithm.
Given a fixed tie-breaking rule among the girls, the greedy

algorithm matches each arriving boy to the first available
girl according to the tie-breaking rule, if such a girl exists.
Greedy produces a maximal matching, and hence has a com-
petitive ratio of at least 1

2
in the adversarial model.

The Ranking Algorithm.
The ranking algorithm of [9] first randomly gives a rank-

ing on the girls, and then runs the greedy algorithm with
ties broken in favor of the highly ranked girls. To be spe-
cific, at the beginning of the algorithm, it randomly picks a
permutation σ which assigns ranks from 1 to n to the girls,
where girl σ(l) is given rank l for l = 1, . . . , n. Then in
running the greedy algorithm, tie-breaking is in favor of the
girls with higher ranks (recall that this means smaller rank
numbers).

We use Ranking(G, σ, π) to denote the matching produced
by the ranking algorithm on graph G when the ranking over
the girls is σ and the order of arrivals of the boys is π.
The rest of this paper is devoted to analyzing the ranking
algorithm in the random arrivals model. That is, we seek
to bound E[Size of Ranking(G, σ, π)] where the expectation
is over the random choice of permutations σ and π, and we
prove that it is at least 0.696 ·MM(G) for every bipartite
graph G.

3. DERIVING A FAMILY OF FACTOR RE-
VEALING LPS

In this section, we first derive a family of exponential
size factor-revealing LPs, and then relax them into polyno-
mial size LPs. We start with the following duality principle,
which is also used in the original paper of Karp, Vazirani,
and Vazirani [9].

Lemma 3.1 (Duality Principle). Let G = (L,R,E)
be an arbitrary bipartite graph and G′ be the mirror of G,
i.e., G′ = (R,L,E′) with E′ = {(a, b) : (b, a) ∈ E}. Then
for any two permutations σ and π, Ranking(G, σ, π) is the
inverse of Ranking(G′, π, σ).

We leave the proof of the above lemma to the full version
of this paper. Intuitively, this lemma states that boys and
girls play symmetrical roles in the ranking algorithm with
random arrivals. This allows us to apply any inequality that
we prove for the boys to the girls’ side and vice versa.

3.1 A Family of Exponential Size LPs
Throughout this section, we fix a bipartite graph G and

an optimal matching OPT in G. Let x(σ, π, l, r) be the bi-
nary indicator variable for the event that Ranking(G, σ, π)
matches the girl at rank l to the boy at rank r. We prove two
classes of inequalities, based on dominance and monotonic-
ity properties of the ranking algorithm. These inequalities
will be the constraints of our factor-revealing LPs.

3.1.1 Dominance Property

Fix two permutations σ and π. Assume the optimal match-
ing OPT matches girl σ(l) with boy π(r). Then when the
boy with rank r arrives, the ranking algorithm either matches
him to some girl with rank at most l, or if it fails to do
so, it must be the case that the girl at rank l was already
matched to some boys of smaller rank by the algorithm. In
other words,

Lemma 3.2. For any two permutations σ, π and for all
l, r ∈ [n], we have:

l∑
l′=1

x(σ, π, l′, r) +

r−1∑
r′=1

x(σ, π, l, r′) ≥ 1(σ(l),π(r))∈OPT , (1)

where 1(σ(l),π(r))∈OPT is the binary indicator variable for the
event (σ(l), π(r)) ∈ OPT .

These constraints are in fact enough to prove a competitive
ratio of 1/2 for the ranking algorithm.

3.1.2 Monotonicity Property

Given permutations σ, π, consider promoting a girl with
rank lold to a higher rank of lnew (i.e., lnew < lold), with
relative ranking of the other girls intact. In other words, we
define a new ranking for girls σlnew

lold
as follows: σlnew

lold
(l) =

σ(l) if l < lnew or l > lold, σ
lnew
lold

(l + 1) = σ(l) if lnew ≤ l <

lold, and σlnew
lold

(lnew) = σ(lold).

With an argument similar to the ones in [9, 6, 3], it
can be observed that the symmetric difference between the
two matchings Ranking(G, σ, π) and Ranking(G, σlnew

lold
, π)

is a single alternating path (see Lemma 2 in [3]). If we
restrict our attention to girls of rank at most lold in σ,
the difference is an alternating path starting from the node
σ(lold), as depicted in Figure 1. This means that for ev-
ery boy b, if b was matched to some girl with rank at most
l in Ranking(G, σ, π), i.e.,

∑l
l′=1 x(σ, π, l′, r) = 1, then in

Ranking(G, σlnew
lold

, π) he is matched to a girl with rank at

most l + 1l≥lnew , i.e.,
∑l+1l≥lnew
l′=1 x(σlnew

lold
, π, l′, r) = 1. (the

+1l≥lnew term is due to the insertion of a girl at rank lnew)
Therefore the monotonicity property can be captured with
the following inequality.

Lemma 3.3. For all σ, π, lnew, lold, l, r ∈ [n] such that
lnew < lold and l < lold, we have:

l+1l≥lnew∑
l′=1

x(σlnew
lold

, π, l′, r) ≥
l∑

l′=1

x(σ, π, l′, r). (2)

This set of inequalities, together with the inequalities for
the dominance property, can be used to prove a competitive



Figure 1: Difference between Ranking(G, σ, π) and

Ranking(G, σlnew
lold

, π) on girls of rank at most lold

ratio of 1− 1/e for the ranking algorithm in the adversarial
setting, as they capture the logic behind the previous proofs
of this theorem. In our random arrivals setting, since boys
and girls play symmetric roles, the duality principle implies
that the following symmetric inequality is also true, which
gives us additional strength to beat 1− 1/e.

Lemma 3.4. For all σ, π, rnew, rold, r, l ∈ [n] such that
rnew < rold and r < rold, we have:

r+1r≥rnew∑
r′=1

x(σ, πrnew
rold

, l, r′) ≥
r∑

r′=1

x(σ, π, l, r′). (3)

3.1.3 Putting Everything Together

Given n > 0 and the number of edges k > 0 in the op-
timal matching OPT, we define the following LP, which
we call expLP(n, k), with an exponential number of vari-
ables and constraints. The variables of this LP are the
x(σ, π, l, r) variables defined above, except that they are
no longer required to be either 0 or 1. We may assume
without loss of generality that the optimal matching OPT
consists of edges (i, i) for i ∈ [k]. With this assumption,
1(σ(l),π(r))∈OPT = 1σ(l)=π(r)≤k. We can now define the
factor-revealing LP expLP(n, k):

minimize 1
(n!)2k

∑
σ,π,l,r x(σ, π, l, r)

subject to: (1), (2), (3),

∀σ, π, l, r : x(σ, π, l, r) ≥ 0

With a slight abuse of notation, we also let expLP(n, k)
denote the optimal value of the above LP. The following
lemma summarizes what we have so far.

Lemma 3.5. The competitive ratio of the ranking algo-
rithm in the random arrivals model is lower-bounded by
infn∈I infk expLP(n, k), for any infinite subset I of natural
numbers.

Proof. Suppose we run the ranking algorithm on a graph
of size n in the random arrivals model. Let n′ be any integer
in I that is as large as n. Then by adding isolated vertices
to the graph, we ensure the size of the graph is n′, without
changing the solution of the ranking algorithm, or the size
of the optimal matching.

Let x(σ, π, l, r) be 1 if the girl at rank l is matched to
the boy at rank r when the permutations are σ, π respec-
tively, and 0 otherwise. Then as we showed in Lemma 3.2,
Lemma 3.3, and Lemma 3.4, x is a feasible solution to
expLP(n′), and the objective value of expLP(n′) under x
equals to the competitive ratio of the algorithm for the
graph, i.e., the ratio of the expected size of the solution of
the algorithm to the size of the optimal matching. As a lin-
ear relaxation, optimal value of expLP(n′) is a lower bound
on the competitive ratio of the algorithm when graphs have
size n. Our lemma follows by taking infimum over all n.

3.2 A Family of Polynomial Size LPs
The linear program expLP(n, k) has an exponential size,

making it hard to solve either analytically or numerically.
In this section, we carefully define polynomially many new
variables in terms of the variables of expLP(n, k), and write
the constraints that the inequalities of expLP(n, k) impose
on these new variables. This results in a polynomial size
relaxation of expLP(n, k) which is easier to analyze while
preserving most of its strength.

Recall that w.l.o.g. we let OPT consist of edges (i, i) for
i ∈ [k]. Let x1(l, r, p) be the probability (over the random
choices of σ, π) that the girl at rank l is matched to the
boy at rank r in Ranking(G, σ, π) and the girl at rank p is
matched to the boy at rank r in OPT , i.e., σ(p) = π(r) ≤ k.
In other words,

x1(l, r, p) = Eσ,π[1σ(p)=π(r)≤k · x(σ, π, l, r)].

Similarly, let x2(r, l, q) be the probability that the boy at
rank r is matched to the girl at rank l in Ranking(G, σ, π)
and the boy at rank q is matched to the girl at rank l in
OPT . In other words,

x2(r, l, q) = Eσ,π[1σ(l)=π(q)≤k · x(σ, π, l, r)].

Note we have chosen the order of indices for x2 in such a
way that x1(l, r, p) and x2(r, l, q) have symmetric forms.

We also introduce redundant partial sum variables

y1(l, r, p) =

l∑
l′=1

x1(l′, r, p) ∀l, r, p ∈ [n]

y2(r, l, q) =

r∑
r′=1

x2(r′, l, q) ∀r, l, q ∈ [n],

and let y1(0, r, p) = 0 for r, p ∈ [n] and y2(0, l, q) = 0 for
l, q ∈ [n] for convenience.

We now derive inequalities between these variables based
on the inequalities of expLP(n, k). Multiplying both sides
of the dominance inequality (1) by 1σ(l)=π(r)≤k gives us:

l∑
l′=1

1σ(l)=π(r)≤k · x(σ, π, l′, r)

+

r−1∑
r′=1

1σ(l)=π(r)≤k · x(σ, π, l, r′) ≥ 1σ(l)=π(r)≤k.

Taking expectation of both sides of this inequality over a
random choice of σ and π, and we have:

y1(l, r, l) + y2(r − 1, l, r) ≥ k/n2 ∀l, r ∈ [n] (4)



Similarly, we multiply both sides of the monotonicity in-
equality (2) by 1σ(p)=π(r)≤k for a fixed p, let lold = n, and
take expectation over a random choice of σ, π. The right-
hand side of the resulting inequality is clearly y1(l, r, p). For

the left-hand side, we observe that the permutation σlnew
lold

is

a uniformly random permutation, and that σ(p) = π(r) if
and only if σlnew

n (pnew) = π(r), where:

pnew =


p p < lnew

p+ 1 lnew ≤ p < n

lnew p = n.

Using these observations the inequality (2) implies that for
every lnew, l < n and r, p,

y1(l + 1l≥lnew , r, pnew) ≥ y1(l, r, p). (5)

A symmetric argument using (3) implies that for every
rnew, r < n and l, q,

y2(r + 1r≥rnew , l, qnew) ≥ y2(r, l, q), (6)

where qnew is defined by an equation similar to (3.2) with p
and lnew replaced by q and rnew. Finally, for every l, r we
have ∑

p

x1(l, r, p) =
∑
q

x2(r, l, q), (7)

as both sides of the equation are equal to k
n

Eσ,π[x(σ, π, l, r)].
Inequalities (4), (5), (6), and (7), together with non-negativity
constraints and equations defining y1 and y2 in terms of x1

and x2 form the constraints of our new LP. The objective of

this LP is 1
2k

(∑
l,r,p x1(l, r, p) +

∑
r,l,q x2(r, l, q)

)
, which is

equal to the objective of expLP(n, k).

3.2.1 Simplifications

Before analyzing the above LP, we further simplify it in a
few steps:

• If x1, x2 (together with the corresponding y1, y2) is a
feasible solution, then x̄1 = x̄2 = (x1 + x2)/2 (and
ȳ1 = ȳ2 = (y1 + y2)/2) is also feasible with the same
objective value. Hence by imposing that x1 = x2, the
optimal LP value is the same.

• The value of k does not affect the value of the LP, since
by scaling a solution of the LP for k by a factor of k′/k
we obtain a solution for k′. So w.l.o.g., we let k = n.

• For p < lnew, we have pnew = p; hence inequality (5)
is trivial for this range of p.

• For lnew ≤ p < n, we have pnew = p+ 1, and inequal-
ity (5) becomes y1(l + 1l≥lnew , r, p + 1) ≥ y1(l, r, p).
This constraint is strongest when lnew = p. So if l ≥ p,
we have y1(l+ 1, r, p+ 1) ≥ y1(l, r, p), and if l < p, we
have y1(l, r, p+ 1) ≥ y1(l, r, p).

• For p = n, we have pnew = lnew, and inequality (5) be-
comes y1(l + 1l≥lnew , r, lnew) ≥ y1(l, r, n). If lnew > l,
this is y1(l, r, lnew) ≥ y1(l, r, n). This, together with
the inequality y1(l, r, p + 1) ≥ y1(l, r, p) from the last
paragraph shows that y1(l, r, p) are equal for p = l +
1, . . . , n. If lnew ≤ l, we get y1(l+1, r, lnew) ≥ y1(l, r, n).

The above observations together with Lemma 3.5 can be
summarized in the following Lemma.

Lemma 3.6. The competitive ratio of the ranking algo-
rithm in the random arrivals model is lower-bounded by
infn∈I polyLP(n) for any infinite subset I of natural num-
bers, where polyLP(n) is the linear program defined below:

minimize
1

n

∑
l,r,p∈[n]

x(l, r, p) subject to

∀l, r ∈ [n] : y(l, r, l) + y(r − 1, l, r) ≥ 1

n

∀l, r, p ∈ [n], p ≤ l < n : y(l + 1, r, p+ 1) ≥ y(l, r, p)

∀l, r, p ∈ [n], l < p : y(l, r, p) = y(l, r, l + 1)

∀l, r, p ∈ [n], p ≤ l < n : y(l + 1, r, p) ≥ y(l, r, l + 1)

∀l, r ∈ [n] :
∑
p

x(l, r, p) =
∑
p

x(r, l, p)

∀r, p ∈ [n], 0 ≤ l ≤ n : y(l, r, p) =

l∑
l′=1

x(l′, r, p)

∀l, r, p ∈ [n] : x(l, r, p) ≥ 0

Unfortunately, despite its apparently simple form, giving
a closed form optimal solution to polyLP(n) seems difficult.
In the next section, we propose the technique of strongly fac-
tor revealing LPs, which will enable us to prove good lower
bounds on infn∈I polyLP(n) for some infinite set I using
computer LP solvers, which is sufficient for our purpose.

4. STRONGLY FACTOR-REVEALING LPS
For a maximization algorithm, a family of LPs LP (n) is

called factor-revealing, if the infimum of the optimal values
of LPs in this family is a lower bound on the approximation
ratio (or competitive ratio) of the algorithm. For techni-
cal convenience, we assume that the approximation ratio of
the algorithm is monotonely decreasing, like in the case of
ranking algorithm.

If LPs in such a family have a nice form, we can solve each
of them analytically and get a tight bound on the ratio of
the algorithm (as was done in [15, 11]). When this is not
the case, a common approach is to observe patterns in the
optimal dual solutions, and then try to extrapolate a class
of the dual solutions that are near-optimal. However, this
process can be painstaking, and is usually doomed to incur
a constant loss in factor (see [7, 13] for an example).

Here we propose a different approach. We say that a fam-
ily of LPs is strongly factor-revealing, if the solution of any
LP in this family is a lower bound on the approximation ra-
tio of the algorithm. Our approach is based on transforming
our family of factor-revealing LPs into a family of strongly
factor-revealing LPs of almost the same strength. Once this
is done, we can use LP solvers to solve large LPs in this
family and obtain good lower bounds on the approximation
ratio of the algorithm. Despite its apparent simplicity, this is
a powerful technique. For example, we have used this tech-
nique [12] to significantly simplify and in some cases improve
the analysis of factor-revealing LPs in [7, 13]. These LPs are
the basis of the analysis of the currently best known algo-
rithms for the uncapacitated facility location problem, and



bounding their solution is the most technically challenging
part of the analysis.

To illustrate how one can get strongly factor-revealing LPs
from standard factor-revealing ones, we consider the follow-
ing illustrative example.

4.1 An Illustrative Example
Suppose we have the following family of factor-revealing

LPs for some algorithm, denoted by LP (n).

minimize 1
n

∑n
t=1 xt subject to:

1− xt ≤ 1
n

∑t−1
s=1 xs ∀t = 1, . . . , n

xt ≥ xt+1 ≥ 0 ∀t = 1, . . . , n− 1

It is in fact easy to solve these LPs analytically: the optimal
solution is xt = (1 − 1

n
)t−1 for t ∈ [n], giving an objective

value of 1− (1− 1
n

)n. Note that the optimal solution, nor-
malized properly, is converging to the continuous function
e−y for y ∈ [0, 1], while the optimal objective value is mono-
tonely decreasing in n, and converges to 1−1/e from above.
However, here we try to bound these LPs by derive a fam-
ily of strongly factor-revealing LPs in order to illustrate the
technique.

Fix a natural number m, and consider any multiple n of
m. Let n = md. Then we start with the optimal solution
x1, . . . , xn to LP (n), and project it into the smaller size m
while preserving objective value. Specifically, we define

x′i =
1

d
·

id∑
j=(i−1)d+1

xj for all i ∈ [m].

See Figure 2 for a pictorial demonstration. Clearly this
transformation preserves the objective value, i.e.,

1

n

n∑
t=1

xt =
1

m

m∑
t=1

x′t.

But x′ is not a feasible solution to LP (m). However, at least
when n,m are both large, both solutions are similar in form,
and x′ only slightly violates the constraints of LP (m).

Now comes our main twist. Instead of trying to fix the
projected solution such that it becomes feasible, we modify
the constraint to accommodate the projected solution. As
the projected solution is only slightly infeasible, our changes
to the constraints will be slight too. Specifically, we replace
the first constraint of LP (n) by

1− xt ≤
1

m

t∑
s=1

xs,

and let LP ′(n) denote the resulting LP.

To justify our modification, we verify that the variables
x′ defined above constitute a feasible solution to LP ′(m):

1− x′t = 1− 1

d

td∑
j=(t−1)d+1

xj ≤ 1− xtd

≤ 1

n

td−1∑
s=1

xs ≤
1

n

td∑
s=1

xs =
1

m

t∑
s=1

x′s.

Here the first and last equalities are by the definition of x′,
the first inequality is by the second constraint of LP (n), and
the second inequality is by the first constraint of LP (n).
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Figure 2: Projecting Solutions
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Figure 3: Optimal Values of LP (n) and LP ′(n)

As a consequence, LP ′(m) is a lower bound on LP (n) for
all n that is a multiple of m. In fact, even the assumption
that n is a multiple of m is not necessary, since we can first
pad an optimal solution of LP (n) with n′ − n zeros where
n′ = mdn/me and then scale the solution up by a factor of
n′/m. This gives us a feasible solution of LP (n′) with the
same objective value, and the above transformation can be
applied to this solution to get a feasible solution of LP ′(m).

Hence LP ′(m) is a family of strongly factor-revealing LPs.
Thus, the value of LP ′(m) for any m gives a lower bound
on infn LP (n). As it turns out, in this case, the optimal so-
lution of LP ′(m) is precisely 1−(1+1/m)−m, and therefore
the lower bound given by LP ′(m) converges to the correct
value of infn LP (n) from below, which is 1 − 1/e. Figure 3
shows the values of LP (n) and LP ′(n) for n ≤ 50.

4.2 The Technique
The notion of strongly factor-revealing LPs is most useful

when the standard factor-revealing LPs in question are hard
to solve analytically, but their optimal solutions converge to



some continuous curve or surface. When this is the case, the
LP constraints often are robust to slight alternations (e.g.
shift of indices).

To get strongly factor-revealing LPs from standard ones,
we fix LP (m), take the solution of LP (n) for any large n
that is a multiple of m, and project it down to construct
a candidate solution to LP (m) while preserving the objec-
tive value. This usually violates some of the constraints of
LP (m), but only slightly, similar to a rounding error. Then
we define a slightly relaxed version LP ′(m) of LP (m) in
such a way that the projected solution becomes feasible. It
follows that the optimal value of LP ′(m) is a lower bound
for LP (n) for all multiples n of m, and hence LP ′(m) is
strongly factor-revealing. Often, as we set m to be a large
number, such rounding error becomes less significant, and
LP ′(n) and LP (n) are similar in both forms and “strength”.

This is a heuristic meta-recipe for constructing a strongly
factor-revealing LP. There does not seem to be a general
theorem for this approach, and the solution often requires
specific understanding of the structure of the original factor-
revealing LP. Sometimes, trying to repair the constraints by
merely shifting the indices will hurt the strength of the LPs
by too much. For such cases, what we can do instead is
to write the strongest constraints possible that are feasible
for the projected solution. For example, as we will see in
Section 4.3, in the case of polyLP(n) we will need to re-
place one inequality with n relaxed inequalities. This can
sometimes be difficult and requires nontrivial understand-
ing of the structure of the factor-revealing LPs, but it is still
considerably easier than solving the LPs analytically.

There are several advantages in using our strongly factor-
revealing LP approach to analyze factor-revealing LPs. First
of all, our approach often gives good bounds that are as
close as computational resources allow, which is the second
best thing to having an analytical solution. Secondly, (the
manual part of) the resulting proof is significantly simpler
than the technically messy arguments based on estimating
the dual (as in [7, 13]). Finally, often one faces the trade-
off between having factor-revealing LPs with good strength
and having such LPs that are amenable to analysis. The
simplicity of our approach allows us to focus on the former,
and let computers take care of the latter.

4.3 Strongly Factor-Revealing LPs for Rank-
ing

Our strongly factor-revealing LP polyLP′(n) is defined to
be the same as polyLP(n) except with the first constraint
replaced by:

∀ l, r, p ∈ [n] : y(l, r, l) + y(r, l, p) ≥ 1/n. (8)

We remark that the choice of this modification is not ob-
vious. It is the strongest constraint that we are able to
write based on our technical understanding of the structure
of polyLP(n). All the other natural modifications we tried
do not preserve the strength of the LPs as well as this one,
as suggested by computer experiments.

Lemma 4.1. The family polyLP′(n) defined above is a fam-
ily of strongly factor-revealing LPs for the ranking algorithm
in the random arrivals model. In other words, for every m,
polyLP′(m) is a lower bound on the competitive ratio of the
ranking algorithm in the random arrivals model.

Proof. Fix integer m > 0. For any instance size n that
is a multiple of m, we show that the competitive ratio of the
ranking algorithm in the random arrivals model on instances
of this size is lower-bounded by polyLP′(m).

By Lemma 3.6, the desired competitive ratio is at least
infd polyLP(md). As in the example in Section 4.1, we
take an optimal solution x, y of polyLP(n) for n = md and
project it down to a feasible solution x′, y′ of polyLP′(m).
This projection is defined as follows:

Definition 4.2. Let x, y be an optimal solution to the
linear program polyLP(n) with n = md. For any i, j, k ∈
[m], we define f(i) = {d · (i − 1) + 1, . . . , d · i}, f(i, j) =
f(i) × f(j), and f(i, j, k) = f(i) × f(j) × f(k), where ×
denotes Cartesian product. For l′, r′, p′ ∈ [m], we define
x′(l′, r′, p′) = 1

d

∑
(l,r,p)∈f(l′,r′,p′) x(l, r, p) and y′(l′, r′, p′) =

1
d

∑
(r,p)∈f(r′,p′) y(l′ · d, r, p).

It is easy to see that x′, y′ for polyLP′(m) has the same
objective value as x, y for polyLP(n).

1

m

∑
l′,r′,p′∈[m]

x′(l′, r′, p′)

=
1

m

∑
l′,r′,p′∈[m]

1

d

∑
(l,r,p)∈f(l′,r′,p′)

x(l, r, p)

=
1

n

∑
l,r,p∈[n]

x(l, r, p) = polyLP(n).

We next show that x′, y′ is a feasible solution to polyLP′(m).

By summing the fifth constraint of polyLP(n) over (l, r) ∈
f(l′, r′) we get the fifth constraint of polyLP′(m). Simi-
larly, the sixth constraint of polyLP′(m) can be obtained by
summing the corresponding constraint in polyLP(n) over
(r, p) ∈ f(r′, p′), l = l′ · d. For p′ ≤ l′ < m, we have:

y′(l′ + 1, r′, p′ + 1) =
1

d

∑
(r,p)∈f(r′,p′)

y(l′d+ d, r, p+ d)

≥ 1

d

∑
(r,p)∈f(r′,p′)

y(l′ · d, r, p)

= y′(l′, r′, p′),

where the inequality follows from chaining inequalities y(l′d+
j + 1, r, p + j + 1) ≥ y(l′d + j, r, p + j) for j = 0, . . . , d − 1.
This establishes the second inequality of polyLP′(m). Other
monotonicity constraints (the 3rd and 4th inequalities) are
also straightforward to verify, and their proofs are left to
Appendix A. To verify the new dominance inequality (8),
note that for all l′, r′, p′ ∈ [m]

y′(r′, l′, p′) =
1

d

∑
(l,p)∈f(l′,p′)

y(r′d, l, p)

≥ 1

d

∑
l∈f(l′)

d · y(r′d− 1, l, r′d)

≥ 1

d

∑
(l,r)∈f(l′,r′)

y(r − 1, l, r′d)

=
1

d

∑
(l,r)∈f(l′,r′)

y(r − 1, l, r).

Here the second line follows from the fact that for p ≥ r′d,
y(r′d, l, p) ≥ y(r′d − 1, l, p) = y(r′d − 1, l, r′d), and for p <



r′d, y(r′d, l, p) ≥ y(r′d − 1, l, r′d) by the fourth constraint
of polyLP(n). The third line follows from the definition of
y and non-negativity of x, and the fourth line follows from
the third constraint of polyLP(n). Therefore,

y′(l′, r′, l′) + y′(r′, l′, p′)

≥ 1

d

∑
(r,l)∈f(r′,l′)

y(l′d, r, l) +
1

d

∑
(l,r)∈f(l′,r′)

y(r − 1, l, r)

≥ 1

d

∑
(r,l)∈f(r′,l′)

y(l, r, l) +
1

d

∑
(l,r)∈f(l′,r′)

y(r − 1, l, r)

≥ 1

d
· d2 · 1

n
=

1

m
,

where the third line follows from the definition of y and
non-negativity of x, and the fourth line follows from the
first constraint in polyLP(n).

4.3.1 Results from LP Solvers

Given the results in the previous section, to obtain lower
bounds on the competitive ratio of the ranking algorithm in
the random arrivals model, it is sufficient to solve polyLP′(m)
for as many values of m as possible, and take the best of the
results. The numerical results are reported in Appendix B.
These results, together with Lemma 4.1, prove the main re-
sult of this paper:

Theorem 4.3. The competitive ratio of the ranking algo-
rithm in the random arrivals model is at least 0.696.

We do not know if polyLP gives a tight bound on the
competitive ratio of ranking in the random arrivals model.
The bipartite graph with the edge set {(i, j) : i ≤ j} for
n = 7 shows that this factor is at most 0.796. Note that this
is dominated by the family of examples given by Karande,
Mehta, and Tripathi [8], which prove an upper bound of
0.727. Also, Manshadi et al. [14] showed that no online
algorithm can have a factor better than 0.823, even in the
i.i.d. model.
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APPENDIX

A. MONOTONICITY INEQUALITIES
To prove the third constraint of polyLP′(m), note that for

l′ < p′ ≤ n and r′ ≤ n,

y′(l′, r′, p′) =
1

d

∑
(r,p)∈f(r′,p′)

y(l′d, r, p)

=
1

d

∑
(r,p)∈f(r′,p′)

y(l′d, r, l′d+ 1)

=
1

d

∑
(r,p)∈f(r′,l′+1)

y(l′d, r, p)

= y′(l′, r′, l′ + 1),

where both second and the third line follow from the third
constraint of polyLP(n). This constraint applies in the sec-



ond line since p′ > l′ and hence for every p ∈ f(p′), p > l′d.
It applies in the third line since every p ∈ f(l′+1) is at least
l′d+ 1.

For the fourth constraint of polyLP′(m), we have that for
every p′ ≤ l′ < n and r′ ≤ n,

y′(l′ + 1, r′, p′) =
1

d

∑
(r,p)∈f(r′,p′)

y(l′d+ d, r, p)

≥ 1

d

∑
(r,p)∈f(r′,p′)

y(l′d+ 1, r, p)

≥ 1

d

∑
(r,p)∈f(r′,p′)

y(l′d, r, l′d+ 1)

=
1

d

∑
(r,p)∈f(r′,l′+1)

y(l′d, r, p)

= y′(l′, r′, l′ + 1).

Here the inequality on the second line follows from the def-
inition of y and non-negativity of x (sixth and seventh con-
straints of polyLP(n)), the third line follows from the fourth
constraint of polyLP(n) (which applies here since p ≤ l′d
for every p ∈ f(p′)), and the fourth line follows from the
third constraint of polyLP(n) (which applies since for every
p ∈ f(l′ + 1), p > l′d).

B. NUMERICAL SOLUTIONS
Table 1 shows the solutions of polyLP(n) and polyLP′(n)

for n = 1, . . . , 40 and n = 50. Solving these two LPs for
n = 50 takes about 10 hours on a personal laptop using the
CPLEX software, and solving them for a much larger value
of n would need considerably more computational resource.
These numbers are also plotted in Figure 4. The detailed
solutions are available upon request.

Note that optimal value of polyLP′(n) for n = 3 already
beats 1− 1/e. This gives a “manually verifiable” proof that
the ranking algorithm with random arrivals beats 1 − 1/e.
The solution of polyLP′(3) is presented in Table 2.

Finally, we have computed the value of expLP(n, n) for
n ≤ 6. These values are

1, 0.75, 0.75, 0.742188, 0.737269, 0.732107.

There is a small positive gap between expLP(n) and polyLP(n)
for these values of n. It is not clear if this gap persists asymp-
totically.

n polyLP(n) polyLP′(n)
1 1 0.5
2 0.75 0.625
3 0.740741 0.641723
4 0.732456 0.657429
5 0.725007 0.667052
6 0.720263 0.673323
7 0.716508 0.677393
8 0.714067 0.680363
9 0.712352 0.682681
10 0.710998 0.684413
11 0.709908 0.685728
12 0.708957 0.686781
13 0.708131 0.687726
14 0.707474 0.688544
15 0.706884 0.689285
16 0.706416 0.689931
17 0.705981 0.690511
18 0.705592 0.691008
19 0.705236 0.691425
20 0.704906 0.691783

n polyLP(n) polyLP′(n)
21 0.704624 0.692120
22 0.704360 0.692438
23 0.704129 0.692739
24 0.703923 0.693017
25 0.703730 0.693264
26 0.703546 0.693489
27 0.703368 0.693684
28 0.703208 0.693870
29 0.703064 0.694047
30 0.702930 0.694220
31 0.702806 0.694383
32 0.702688 0.694534
33 0.702577 0.694670
34 0.702467 0.694794
35 0.702365 0.694908
36 0.702272 0.695024
37 0.702185 0.695135
38 0.702104 0.695243
39 0.702025 0.695343
40 0.701950 0.695436

n polyLP(n) polyLP′(n)
50 0.701357 0.696150

Table 1: Optimal values of polyLP(n) and polyLP′(n)
for n up to 40, and for n = 50.
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Figure 4: Optimal Values of polyLP(n) and
polyLP′(n)
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Table 2: Optimal solution of polyLP′(3)


