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Abstract

We design an expected polynomial-time, truthful-in-expectation, (1 − 1/e)-approximation
mechanism for welfare maximization in a fundamental class of combinatorial auctions. Our
results apply to bidders with valuations that are matroid rank sums (MRS), which encompass
most concrete examples of submodular functions studied in this context, including coverage func-
tions, matroid weighted-rank functions, and convex combinations thereof. Our approximation
factor is the best possible, even for known and explicitly given coverage valuations, assuming
P 6= NP . Ours is the first truthful-in-expectation and polynomial-time mechanism to achieve a
constant-factor approximation for an NP -hard welfare maximization problem in combinatorial
auctions with heterogeneous goods and restricted valuations.

Our mechanism is an instantiation of a new framework for designing approximation mecha-
nisms based on randomized rounding algorithms. A typical such algorithm first optimizes over a
fractional relaxation of the original problem, and then randomly rounds the fractional solution
to an integral one. With rare exceptions, such algorithms cannot be converted into truthful
mechanisms. The high-level idea of our mechanism design framework is to optimize directly
over the (random) output of the rounding algorithm, rather than over the input to the rounding
algorithm. This approach leads to truthful-in-expectation mechanisms, and these mechanisms
can be implemented efficiently when the corresponding objective function is concave. For bid-
ders with MRS valuations, we give a novel randomized rounding algorithm that leads to both a
concave objective function and a (1− 1/e)-approximation of the optimal welfare.
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1 Introduction

The overarching goal of algorithmic mechanism design is to design computationally efficient algo-
rithms that solve or approximate fundamental optimization problems in which the underlying data
is a priori unknown to the algorithm. A central example in both theory and practice is welfare-
maximization in combinatorial auctions. Here, there are m items for sale and n bidders vying for
them. Each bidder i has a private valuation vi(S) for each subset S of the items.1 The welfare of
an allocation S1, . . . , Sn of the items to the bidders is

∑n
i=1 vi(Si). Since valuations are initially

unknown to the seller, computing a near-optimal allocation requires eliciting information from the
(self-interested) bidders, for example via a bid. A mechanism is a protocol that extracts such
information and computes an allocation of the items and payments.

The “holy grail” for a mechanism designer is to devise a computationally efficient and incentive-
compatible mechanism with an approximation factor that matches the best one known for the
(easier) problem in which the underlying data is provided up front.2 Such results are usually difficult
to obtain, and in some cases are provably impossible using deterministic mechanisms [20, 27]. The
space of randomized mechanisms, however, is much more promising as shown recently in [9, 12].3

This paper provides such a positive result for a fundamental class of combinatorial auctions, via a
novel randomized mechanism design framework based on convex optimization.

Algorithmic mechanism design is difficult because incentive compatibility severely limits how the
algorithm can compute an outcome, which prohibits use of most of the ingenious approximation
algorithms that have been developed for different optimization problems. More concretely, the
only general approach known for designing (randomized) truthful mechanisms is via maximal-in-
distributional range (MIDR) algorithms [9, 12]. An MIDR algorithm fixes a set of distributions
over feasible solutions — the distributional range — independently of the valuations reported by
the self-interested participants, and outputs a random sample from the distribution that maximizes
expected (reported) welfare. The Vickrey-Clarke-Groves (VCG) payment scheme renders an MIDR
algorithm truthful-in-expectation.

Most approximation algorithms are not MIDR algorithms. Consider, as an example, a ran-
domized rounding algorithm for welfare maximization in combinatorial auctions (e.g. [14, 11]). We
can view such an algorithm as the composition of two algorithms, a relaxation algorithm and a
rounding algorithm. The relaxation algorithm is deterministic and takes as input the problem data
(players’ valuations v), and outputs the (fractional) solution to a linear programming relaxation
of the welfare-maximization problem that is optimal for the objective function defined by v. The
rounding algorithm is randomized and takes as input this fractional solution and outputs a feasible
allocation of the items to the players. Taken together, these algorithms assign to each input v a
probability distribution D(v) over integral allocations. For almost all known randomized rounding
algorithms, there is an input v such that the expected objective function value Ey∼D(v)[v

T y] with

the distribution D(v) is inferior to that Ey∼D(w)[v
T y] with a distribution D(w) that the algorithm

1Each bidder has an exponential number of private values; we ignore the attendant representation issues for the
moment.

2In this paper, by “incentive compatible” we generally mean a (possibly randomized) mechanism such that every
participant maximizes its expected payoff by truthfully revealing its information to the mechanism, no matter how
the other participants behave. Such mechanisms are called truthful-in-expectation, and are defined formally in
Section 2.2.

3We note that the impressively general positive results for implementations in Bayes-Nash equilibria that were
recently obtained in [18, 17, 1] do not apply to the stronger incentive-compatibility notions used in this paper and in
most of the algorithmic mechanism design literature.
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would produce for a different input w — and this is a violation of the MIDR property. Informally,
such violations are inevitable unless a rounding algorithm is designed explicitly to avoid them, on
top of the usual approximation requirements.

The exception that proves the rule is the important and well-known mechanism design frame-
work of Lavi and Swamy [21]. Lavi and Swamy [21] begin with the foothold that the fractional
welfare maximization problem — the relaxation algorithm above — can be made truthful by charg-
ing appropriate VCG payments. Further, they identify a very special type of rounding algorithm
that preserves truthfulness: if the expected allocation produced by the rounding algorithm is always
identical to the input to the rounding algorithm, component-wise, up to some universal scaling fac-
tor α, then composing the two algorithms easily yields an α-approximate truthful-in-expectation
mechanism (after scaling the fractional VCG payments by α). Perhaps surprisingly, there are
some interesting problems, such as welfare maximization in combinatorial auctions with general
valuations, that admit such a rounding algorithm with a best-possible approximation guarantee
(assuming P 6= NP ). However, most NP -hard welfare maximization problems do not seem to
admit good randomized rounding algorithms of the rigid type required by this design framework.

1.1 Our Contributions

We introduce a new approach to designing truthful-in-expectation approximation mechanisms based
on randomized rounding algorithms; we outline it here for the special case of welfare maximiza-
tion in combinatorial auctions. The high-level idea is to optimize directly on the outcome of the
rounding algorithm, rather than merely on the outcome of the relaxation algorithm (the input to
the rounding algorithm). In other words, let r(x) denote a randomized rounding algorithm, from
fractional allocations to integer allocations. Given players’ valuations v, we compute a fractional
allocation x that maximizes the expected welfare Ey∼r(x)[v

T y] over all fractional allocations x. This
methodology evidently gives MIDR algorithms. This optimization problem is often intractable, but
when the rounding algorithm r and the space of valuations v are such that the function Ey∼r(x)[v

T y]
is always concave in x — in which case we call r a convex rounding algorithm — it can be solved
in polynomial time using convex programming (modulo numerical issues that we address later).

We use this design framework to give an expected polynomial-time, truthful-in-expectation,
(1 − 1/e)-approximation mechanism for welfare maximization in combinatorial auctions in which
bidders’ valuations are matroid rank sums (MRS) — non-negative linear combinations of matroid
rank functions on the items. MRS valuations are submodular and encompass most concrete ex-
amples of submodular functions that have been studied in the combinatorial auctions literature,
including all coverage functions and matroid weighted-rank functions (see Section 2.4 for formal
definitions). Our approximation guarantee is optimal, assuming P 6= NP , even for the special
case of the welfare maximization problem with known and explicitly presented coverage valuations.
Our mechanism is the first truthful-in-expectation and polynomial-time mechanism to achieve a
constant-factor approximation for any NP -hard special case of combinatorial auctions that doesn’t
assume that there are multiple copies of every type of item. It works with “black-box” valuations,
provided that they support a randomized analog of a “value oracle”. We also give a (non-oracle-
based) version of the mechanism for explicitly represented coverage valuations.
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1.2 Related Work

We discuss only the results most pertinent to this work; see [7] for an introduction to combinatorial
auctions, and [3] for a survey of truthful approximation mechanisms for combinatorial auctions.

For the welfare maximization problem in combinatorial auctions with general valuations (as-
suming only that vi(∅) = 0 and that vi(S) ≤ vi(T ) whenever S ⊆ T ), the best approximation factor
possible by a polynomial-time approximation algorithm is roughly min{√m,n}, where n is the num-
ber of bidders and m is the number of items. There are comparable unconditional lower bounds
in various oracle models, assuming polynomial communication and unbounded computation [24];
and, assuming that P 6= NP , for various classes of succinctly represented valuations [23].

These strong negative results for welfare maximization with general valuations motivate the
study of important special cases. Numerous special cases have been considered (see [3, Fig 1.2]),
and the most well-studied one is for bidders with valuations that are submodular, meaning that
vi(S ∩ T ) + vi(S ∪ T ) ≤ vi(S) + vi(T ) for every bidder i and bundles S, T of items. Submodular
functions play a fundamental role in combinatorial optimization, and have a natural economic
interpretation in terms of diminishing marginal returns.

Without incentive-compatibility constraints, the welfare maximization problem with submod-
ular bidder valuations is completely solved. Vondrák [29] gave a (1 − 1

e
)-approximation algorithm

for the problem, improving over the 1
2 -approximation given in [22]. The algorithm in [29] works in

the value oracle model, where each valuation v is modeled as a “black box” that returns the value
v(S) of a queried set S in a single operation. The approximation factor of 1− 1

e
is unconditionally

optimal in the value-oracle model (for polynomial communication) [24], and is also optimal (for
polynomial time) for certain succinctly represented submodular valuations, assuming P 6= NP [19].
The result of [19] implies that 1 − 1/e is the optimal approximation factor in our model as well,
assuming P 6= NP .4

Despite intense study, prior to this work, there were no truthful-in-expectation and polynomial-
time constant-factor approximation mechanisms for welfare maximization with any non-trivial sub-
class of submodular bidder valuations. The best previous results, which apply to all submodular

valuations, are a truthful-in-expectation O
(

logm
log logm

)
approximation mechanism in the commu-

nication complexity model due to Dobzinski, Fu and Kleinberg [10], and a universally-truthful5

O(logm log logm) approximation mechanism in the demand oracle model due to Dobzinski [8].
The aforementioned works [10, 21] are precursors to our general design framework that opti-

mizes directly over the output of a randomized rounding algorithm. In the framework of Lavi and
Swamy [21], the input to and output of the rounding algorithm are assumed to coincide up to a
scaling factor, so optimizing over its input (as they do) is equivalent to optimizing over its output
(as we do). In the result of Dobzinski et al. [10], optimizing with respect to their “proxy bidders”
is equivalent to optimizing over the output of a particular randomized rounding algorithm.

4We show in Appendix A that our oracle model is no more powerful than polynomial-time computation in the
special case of explicitly represented coverage functions, for which 1 − 1/e is optimal assuming P 6= NP [19]. In
contrast, the work of [16] improves on the approximation factor of 1 − 1/e by using demand oracles, which can not
be simulated in polynomial time for explicit coverage functions.

5A mechanism is universally-truthful if, for every realization of a the mechanism’s coins, each player maximizes
his payoff by bidding truthfully. Universally truthful mechanisms are defined formally in Section 2.2
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2 Preliminaries

2.1 Optimization Problems

We consider optimization problems Π of the following general form. Each instance of Π consists of
a feasible set S, and an objective function w : S → R. The solution to an instance of Π is given by
the following optimization problem.

maximize w(x)
subject to x ∈ S. (1)

2.2 Mechanism Design Basics

We consider mechanism design optimization problems of the form in (1). In such problems, there
are n players, where each player i has a valuation function vi : S → R. We are concerned with
welfare maximization problems, where the objective is w(x) =

∑n
i=1 vi(x).

We consider direct-revelation mechanisms for optimization mechanism design problems. Such
a mechanism comprises an allocation rule, which is a function from (hopefully truthfully) reported
valuation functions v1, . . . , vn to an outcome x ∈ S, and a payment rule, which is a function from
reported valuation functions to a required payment from each player. We allow the allocation and
payment rules to be randomized.

A mechanism with allocation and payment rulesA and p is truthful-in-expectation if every player
always maximizes its expected payoff by truthfully reporting its valuation function, meaning that

E[vi(A(v)) − pi(v)] ≥ E[vi(A(v′i, v−i))− pi(v
′
i, v−i)] (2)

for every player i, (true) valuation function vi, (reported) valuation function v′i, and (reported)
valuation functions v−i of the other players. The expectation in (2) is over the coin flips of the
mechanism. If (2) holds for every flip of the coins, rather than merely in expectation, we call the
mechanism universally truthful.

The mechanisms that we design can be thought of as randomized variations on the classical
VCG mechanism, as we explain next. Recall that the VCG mechanism is defined by the (generally
intractable) allocation rule that selects the welfare-maximizing outcome with respect to the reported
valuation functions, and the payment rule that charges each player i a bid-independent “pivot term”
minus the reported welfare earned by other players in the selected outcome. This (deterministic)
mechanism is truthful; see e.g. [25].

Now let dist(S) denote the probability distributions over a feasible set S, and let D ⊆ dist(S) be
a compact subset of them. The corresponding Maximal in Distributional Range (MIDR) allocation
rule is defined as follows: given reported valuation functions v1, . . . , vn, return an outcome that is
sampled randomly from a distribution D∗ ∈ D that maximizes the expected welfare Ex∼D[

∑
i vi(x)]

over all distributions D ∈ D. Analogous to the VCG mechanism, there is a (randomized) payment
rule that can be coupled with this allocation rule to yield a truthful-in-expectation mechanism
(see [9]).

2.3 Combinatorial Auctions

In Combinatorial Auctions there is a set [m] = {1, 2, . . . ,m} of items, and a set [n] = {1, 2, . . . , n}
of players. Each player i has a valuation function vi : 2

[m] → R
+ that is normalized (vi(∅) = 0) and
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monotone (vi(A) ≤ vi(B) whenever A ⊆ B). A feasible solution is an allocation (S1, . . . , Sn), where
Si denotes the items assigned to player i, and {Si}i are mutually disjoint subsets of [m]. Player i’s
value for outcome (S1, . . . , Sn) is equal to vi(Si). The goal is to choose the allocation maximizing
social welfare:

∑
i vi(Si).

2.4 Matroid Rank Sum Valuations

We now define matroid rank sum valuations. Relevant concepts from matroid theory are reviewed
in Appendix C.1.

Definition 2.1. A set function v : 2[m] → R
+ is a matroid rank sum (MRS) function if there

exists a family of matroid rank functions u1, . . . , uκ : 2[m] → N, and associated non-negative weights
w1, . . . , wκ ∈ R

+, such that v(S) =
∑κ

ℓ=1 wℓuℓ(S) for all S ⊆ [m].

We do not assume any particular representation of MRS valuations, and require only oracle
access to their (expected) values on certain distributions (see Section 2.5). MRS functions in-
clude most concrete examples of monotone submodular functions that appear in the literature –
this includes coverage functions6, matroid weighted-rank functions7, and all convex combinations
thereof. Moreover, as shown in [19], 1− 1/e is the best approximation possible in polynomial time
for combinatorial auctions with MRS valuations unless P = NP , even ignoring strategic consid-
erations. That being said, we note that some interesting submodular functions — such as some
budget additive functions8 — are not in the matroid rank sum family (see Appendix D.2).

2.5 Lotteries and Oracles

A value oracle for a valuation v : 2[m] → R takes as input a set S ⊆ [m], and returns v(S). We
define an analogous oracle that takes in a description of a simple lottery over subsets of [m], and
outputs the expectation of v over this lottery. Given a vector x ∈ [0, 1]m of probabilities on the
items, let Dx be the distribution over S ⊆ [m] that includes each item j in S independently with
probability xj. We use Fv(x) to denote the expected value of v(S) over draws S ∼ Dx from this
lottery.

Definition 2.2. A lottery-value oracle for set function v : 2[m] → R takes as input a vector
x ∈ [0, 1]m, and outputs

Fv(x) = E
S∼Dx

[v(S)] =
∑

S⊆[m]

v(S)
∏

j∈S

xj
∏

j 6=S

(1− xj). (3)

We note that Fv is simply the well-studied multi-linear extension of v (see for example [6, 29]).
In addition to being the natural randomized analog of a value oracle, a lottery-value oracle is easily

6A coverage function f on ground set [m] designates some set L of elements, and m subsets A1, . . . , Am ⊆ L, such
that f(S) = | ∪j∈S Aj |. We note that L may be an infinite, yet measurable, space. Coverage functions are arguably
the canonical example of a submodular function, particularly for combinatorial auctions.

7This is a generalization of matroid rank functions, where weights are placed on elements of the matroid. It is true,
though not immediately obvious, that a matroid weighted-rank function can be expressed as a weighted combination
of matroid (unweighted) rank functions – see e.g. [13].

8A set function f on ground set [m] is budgeted additive if there exists a constant B ≥ 0 (the budget) such that
f(S) = min(B,

∑
j∈S

f({j})).
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implemented for various succinctly represented examples of MRS valuations, like explicit coverage
functions (see Appendix A).

We also note that lottery-value oracle queries can be approximated arbitrarily well with high
probability using a polynomial number of value oracle queries (see [29]). Unfortunately, we are not
able to reconcile the incurred sampling errors — small as they may be — with the requirement that
our mechanism be exactly truthful. We suspect that relaxing our solution concept to approximate
truthfulness – also known as ǫ-truthfulness – would remove this difficulty, and allow us to relax our
oracle model to the more traditional value oracles.

3 Convex Rounding Framework

3.1 Relaxations and Rounding Schemes

Let Π be an optimization problem. A relaxation Π′ of Π defines for every (S, w) ∈ Π a convex and
compact relaxed feasible set R ⊆ R

m that is independent of w (we suppress the dependence on S);
and an extension wR : R → R of the objective w to the relaxed feasible set R. This gives the
following relaxed optimization problem.

maximize wR(x)
subject to x ∈ R.

(4)

Generally, the extension is defined so that it is computationally tractable to find a point x ∈ R
that maximizes wR(x) (possibly approximately).

For example, S could be the allocations of m items to n bidders in a combinatorial auction,
w(x) the welfare of an allocation, R the feasible region of a linear programming relaxation, and
wR the natural linear extension of w to fractional allocations.

The solution x ∈ R to the relaxed problem need not be in S. A rounding scheme for relaxation
Π′ of Π defines for each feasible set S of Π, and its corresponding relaxed set R, a (possibly
randomized) function r : R → S. Since our rounding scheme will be randomized, we will frequently
use r(x) to denote the distribution over S resulting from rounding the point x ∈ R. Commonly,
the rounding scheme satisfies the following approximation guarantee: Ey∼r(x)[w(y)] ≥ α · wR(x)
for every x ∈ R. In this case, if x∗ maximizes wR over R and wR agrees with w on S, then
Ey∼r(x∗)[w(y)] ≥ α ·maxy∈S w(y).

3.2 Convex Rounding Schemes and MIDR

Our technique is motivated by the following observation: instead of solving the relaxed problem
and subsequently rounding the solution, why not optimize directly on the outcome of the rounding
scheme? In particular, consider the following relaxation of Π that “absorbs” rounding scheme r
into the objective.

maximize Ey∼r(x)[w(y)]

subject to x ∈ R.
(5)

The solution to this problem rounds to the best possible distribution in the range of the rounding
scheme, over all possible fractional solutions in R. While this problem is often intractable, it always
leads to an MIDR allocation rule.

Lemma 3.1. Algorithm 1 is an MIDR allocation rule.
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Algorithm 1 MIDR Allocation Rule via Optimizing over Output of Rounding Scheme

Parameter: Feasible set S of Π.
Parameter: Relaxed feasible set R ⊆ R

m.
Parameter: (Randomized) rounding scheme r : R → S.
Input: Objective w : S → R satisfying (S, w) ∈ Π.
Output: Feasible solution z ∈ S.
1: Let x∗ maximize Ey∼r(x)[w(y)] over x ∈ R.
2: Let z ∼ r(x∗)

We say a rounding scheme r : R → S is α-approximate for α ≤ 1 if w(x) ≥ Ey∼r(x)[w(y)] ≥
α · w(x) for every x ∈ S. When r is α-approximate, so is the allocation rule of Algorithm 1.

Lemma 3.2. If r is an α-approximate rounding scheme, then Algorithm 1 returns an α-approximate
solution (in expectation) to the original optimization problem (1).

For most rounding schemes in the approximation algorithms literature, the optimization prob-
lem (5) cannot be solved in polynomial time (assuming P 6= NP ). The reason is that for any
rounding scheme that always rounds a feasible solution to itself – i.e., r(x) = x for all x ∈ S — an
optimal solution to (5) is also optimal for (1). Thus, in this case, hardness of the original problem
(1) implies hardness of (5). We conclude that we need to design rounding schemes with the unusual
property that r(x) 6= x for some x ∈ S.

We call a (randomized) rounding scheme r : R → S convex if Ey∼r(x)[w(y)] is concave function
of x ∈ R.

Lemma 3.3. When r is a convex rounding scheme for Π′, (5) is a convex optimization problem.

Under additional technical conditions, discussed in the context of combinatorial auctions in
Appendix B, the convex program (5) can be solved efficiently (e.g., using the ellipsoid method). This
reduces the design of a polynomial-time α-approximate MIDR algorithm to designing a polynomial-
time α-approximate convex rounding scheme.

Summarizing, Lemmas 3.1, 3.2, and 3.3 give the following informal theorem.

Theorem 3.4. (Informal) Let Π be a welfare-maximization optimization problem, and let Π′ be a
relaxation of Π. If there exists a polynomial-time, α-approximate, convex rounding scheme for Π′,
then there exists a truthful-in-expectation, polynomial-time, α-approximate mechanism for Π.

Of course, there is no reason a priori to believe that useful convex rounding schemes – let alone
ones computable in polynomial time – exist for any important problems. We show in Section 4
that they do in fact exist and yield new results for an interesting class of combinatorial auctions.

4 Combinatorial Auctions

In this section, we use the framework of Section 3 to prove our main result.

Theorem 4.1. There is a (1 − 1/e)-approximate, truthful-in-expectation mechanism for combi-
natorial auctions with matroid rank sum valuations in the lottery-value oracle model, running in
expected poly(n,m) time.
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We formulate welfare maximization in combinatorial auctions as an optimization problem Π.
An instance (S, w) ∈ Π is given by the following integer program with feasible set S contained in
{0, 1}n×m. Variable xij indicates whether item j is allocated to player i, and w(x) denotes the
social welfare of allocation x.

maximize w(x) =
∑

i vi({j : xij = 1})
subject to

∑
i xij ≤ 1, for j ∈ [m].

xij ∈ {0, 1} , for i ∈ [n], j ∈ [m].
(6)

We let the relaxed feasible set R = R(S) be the result of relaxing the constraints xij ∈ {0, 1} of
(6) to 0 ≤ xij ≤ 1.

We structure the proof of Theorem 4.1 as follows. We define the Poisson rounding scheme, which
we denote by rpoiss, in Section 4.1. We prove that rpoiss is (1 − 1/e)-approximate (Lemma 4.3),
and convex (Lemma 4.2). Lemmas 3.1, 3.2 and 4.3, taken together, imply that Algorithm 1 when
instantiated for combinatorial auctions with r = rpoiss, is a (1−1/e)-approximate MIDR allocation
rule. Lemma 4.2 reduces implementing this allocation rule to solving a convex program.

In Appendix B, we handle the technical and numerical issues related to solving convex programs.
First, we prove that our instantiation of Algorithm 1 for combinatorial auctions can be implemented
in expected polynomial-time using the ellipsoid method under a simplifying assumption on the
numerical conditioning of our convex program (Lemma B.2). Then we show in Section B.3 that
the previous assumption can be removed by slightly modifying our algorithm.

Finally, we prove that truth-telling VCG payments can be computed efficiently in Lemma D.1.
Taken together, these lemmas complete the proof of Theorem 4.1. In Appendix D.2, we discuss
prospects for extending our result beyond matroid rank sum valuations.

4.1 The Poisson Rounding Scheme

In this section we define the Poisson rounding scheme, which we denote by rpoiss. The random
map rpoiss : R → S renders the the following optimization problem over R a convex optimization
problem.

maximize f(x) = Ey∼rpoiss(x)[w(y)]

subject to
∑

i xij ≤ 1, for j ∈ [m].
0 ≤ xij ≤ 1, for i ∈ [n], j ∈ [m].

(7)

We define the Poisson rounding scheme as follows. Given a fractional solution x to (7), do the
following independently for each item j: assign j to player i with probability 1−e−xij . (This is well
defined since 1− e−xij ≤ xij for all players i and items j, and

∑
i xij ≤ 1 for all items j.) We make

this more precise in Algorithm 2. For clarity, we represent an allocation as a function from items
to players, with an additional null player ∗ reserved for items that are left unassigned. The Poisson
rounding scheme is (1−1/e)-approximate and convex. The proof of Lemma 4.3 is not difficult, and
is included below. We prove Lemma 4.2 in Section 4.3. As a warm-up, we first present a simplified
proof of Lemma 4.2 for the special case of coverage valuations in Section 4.2.

Lemma 4.2. The Poisson rounding scheme is convex when player valuations are matroid rank
sum functions.

Lemma 4.3. The Poisson rounding scheme is (1 − 1/e)-approximate when player valuations are
submodular.
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Algorithm 2 The Poisson Rounding Scheme rpoiss

Input: Fractional allocation x with
∑

i xij ≤ 1 for all j, and 0 ≤ xij ≤ 1 for all i, j.
Output: Feasible allocation a : [m] → [n] ∪ {∗}.
1: for j = 1, . . . ,m do
2: Draw pj uniformly at random from [0, 1].
3: if

∑
i(1− e−xij ) ≥ pj then

4: Let a(j) be the minimum index such that
∑

i≤a(j)(1− e−xij ) ≥ pj.
5: else
6: a(j) = ∗
7: end if
8: end for

Proof. Let S1, . . . , Sn be an allocation, and let x be an the integer point of (7) corresponding to
S1, . . . , Sn. Let (S

′
1, . . . , S

′
n) ∼ rpoiss(x). It suffices to show that E[

∑
i vi(S

′
i)] ≥ (1−1/e) ·∑i vi(Si).

By definition of the Poisson rounding scheme, S′
i includes each j ∈ Si independently with

probability 1− 1/e. Submodularity implies that E[vi(S
′
i)] ≥ (1− 1/e) · vi(Si) – this was proved in

many contexts: see for example [15, Lemma 2.2], and the earlier related result in [14, Proposition
2.3]. This completes the proof.

4.2 Warm-up: Convexity for Coverage Valuations

In this section, we prove the special case of Lemma 4.2 for coverage valuations, as defined in
Section 2.4. Fix n, m, and coverage valuations {vi}ni=1, and let R denote the feasible set of
mathematical program (7). Let (S1, . . . , Sn) ∼ rpoiss(x) be the (random) allocation computed by
the Poisson rounding scheme for point x ∈ R. The expected welfare E[w(rpoiss(x))] can be written
as E[

∑n
i=1 vi(Si)], where the expectation is taken over the internal random coins of the rounding

scheme. By linearity of expectation, as well as the fact that the sum of concave functions is concave,
it suffices to show that E[vi(Si)] is a concave function of x for an arbitrary player i with coverage
valuation vi.

Fix player i, and use xj, v, and S as short-hand for xij, vi, and Si respectively. Recall that v
is a coverage function; let L be a ground set and A1, . . . , Am ⊆ L be such that vi(T ) = | ∪j∈T Aj |
for each T ⊆ [m]. The Poisson rounding scheme includes each item j in S independently with
probability 1− e−xj . The expected value of player i can be written as follows.

E [v(S)] = E[| ∪j∈S Aj |]
=
∑

ℓ∈L

Pr[ℓ ∈ ∪j∈SAj ]

Since the sum of concave functions is concave, it suffices to show that Pr[ℓ ∈ ∪j∈SAj ] is concave in
x for each ℓ ∈ L. We can interpret Pr[ℓ ∈ ∪j∈SAj] as the probability that element ℓ is covered by
an item in S, where j ∈ [m] covers ℓ ∈ L if ℓ ∈ Aj . For each ℓ ∈ L, let Cℓ be the set of items that
cover ℓ. Element ℓ ∈ L is covered by S precisely when Cℓ ∩ S 6= ∅. Each item j ∈ Cℓ is included
in S independently with probability 1− e−xj . Therefore, the probability ℓ ∈ L is covered by S can
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be re-written as follows:

Pr[ℓ ∈ ∪j∈SAj ] = 1−
∏

j∈Cℓ

e−xj

= 1− exp


−

∑

j∈Cℓ

xj


 . (8)

Form (8) is the composition of the concave function g(y) = 1 − e−y with the affine function
y → ∑

j∈Cℓ
xj . It is well-known that composing a concave function with an affine function yields

another concave function (see e.g. [4]). Therefore, Pr[ℓ ∈ ∪j∈SAj] is concave in x for each ℓ ∈ L,
as needed. This completes the proof.

4.3 Convexity for Matroid Rank Sum Valuations

In this section, we will prove Lemma 4.2 in its full generality. First, we define a discrete analogue of
a Hessian matrix for set functions, and show that these discrete Hessians are negative semi-definite
for matroid rank sum functions.

Definition 4.4. Let v : 2[m] → R be a set function. For S ⊆ [m], we define the discrete Hessian
matrix Hv

S ∈ R
m×m of v at S as follows:

Hv
S(j, k) = v(S ∪ {j, k})− v(S ∪ {j})− v(S ∪ {k}) + v(S) (9)

for j, k ∈ [m].

Claim 4.5. If v : 2[m] → R
+ is a matroid rank sum function, then Hv

S is negative semi-definite for
each S ⊆ [m].

Proof. We observe that Hv
S is linear in v, and recall that a non-negative weighted-sum of negative

semi-definite matrices is negative semi-definite. Therefore, it is sufficient to prove this claim when
v is a matroid rank function.

Let v be the matroid rank function of some matroid M with ground set [m], and fix S ⊆ [m].
Observe that v is monotone, submodular, integer-valued, and v(T ∪{j}) ≤ v(T )+1 for all T ⊆ [m]
and j ∈ [m]. Therefore, a simple case analysis reveals that for each j, k ∈ [m]

Hv
S(j, k) =

{
−1 if v(S ∪ {j}) = v(S ∪ {k}) = v(S ∪ {j, k}) = v(S) + 1,

0 otherwise.

In other words, −Hv
S is a binary matrix where −Hv

S(j, k) = 1 if and only if two conditions are
satisfied: (1) Both {j} and {k} are independent sets in the contracted matroid M/S, and (2) {j, k}
is dependent in M/S.

It is clear that −Hv
S is symmetric. We now also show that −Hv

S encodes a transitive relation
on [m] — i.e. for all j, k, ℓ ∈ [m], if −Hv

S(j, k) = −Hv
S(k, ℓ) = 1 then −Hv

S(j, ℓ) = 1. Fix j, k, ℓ
such that −Hv

S(j, k) = −Hv
S(k, ℓ) = 1. The sets {j}, {k}, and {ℓ} are independent sets of the

contracted matroid M/S, and moreover {j, k} and {k, ℓ} are dependent in M/S. Assume for a
contradiction that {j, ℓ} is independent in M/S; applying the matroid exchange property to {k}
and {j, ℓ} implies that one of {j, k} and {k, ℓ} must be independent in M/S as well, contradicting
our choice of j, k, and ℓ. Therefore, {j, ℓ} is dependent in M/S, and −Hv

S(j, ℓ) = 1.
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A binary matrix encoding a symmetric and transitive relation is a block diagonal matrix where
each diagonal block is an all-ones or all-zeros sub-matrix. It is known, and easy to prove, that such
a matrix is positive semi-definite. Therefore Hv

S is negative semi-definite.

We now return to Lemma 4.2. Fix n, m, and MRS valuations {vi}ni=1, and let R denote the
feasible set of mathematical program (7). Let (S1, . . . , Sn) ∼ rpoiss(x) be the (random) allocation
computed by the Poisson rounding scheme for point x ∈ R. The expected welfare E[w(rpoiss(x))]
can be written as E[

∑n
i=1 vi(Si)], where the expectation is taken over the internal random coins

of the rounding scheme. By linearity of expectation, as well as the fact that the sum of concave
functions is concave, it suffices to show that E[vi(Si)] is a concave function of x for an arbitrary
player i with MRS valuation vi.

Fix player i, and use xj, v, S as short-hand for xij , vi, Si respectively. The Poisson rounding
scheme includes each item j in S independently with probability 1 − e−xj . We can now write the
expected value of player i as the following function Gv : Rm → R:

Gv(x1, . . . , xm) =
∑

S⊆[m]

v(S)
∏

j∈S

(1− e−xj )
∏

j 6=S

e−xj (10)

The following claim, combined with Claim 4.5, completes the proof of Lemma 4.2.

Claim 4.6. If all discrete Hessians of v are negative semi-definite, then Gv is concave.

Proof. Assume Hv
S is negative semi-definite for each S ⊆ [m]. We work with Gv as expressed in

Equation (10). We will show that the Hessian matrix of Gv at an arbitrary x ∈ R
m is negative

semi-definite, which is a sufficient condition for concavity. We take the mixed-derivative of Gv with
respect to xj and xk (possibly j = k).

∂2Gv(x)

∂xj∂xk
=

∑

S⊆[m]\{j,k}

∏

ℓ∈S

(1− e−xℓ)
∏

ℓ∈[m]\S

e−xℓ

(
v(S)− v(S ∪ {j})− v(S ∪ {k}) + v(S ∪ {j, k})

)

=
∑

S⊆[m]

∏

ℓ∈S

(1− e−xℓ)
∏

ℓ∈[m]\S

e−xℓ

(
v(S)− v(S ∪ {j})− v(S ∪ {k}) + v(S ∪ {j, k})

)

=
∑

S⊆[m]

∏

ℓ∈S

(1− e−xℓ)
∏

ℓ∈[m]\S

e−xℓ Hv
S(j, k)

The first equality follows by grouping the terms of Equation (10) by the projection of S onto
[m] \ {i, j}, and then differentiating. The second equality follows from the fact that v(S) − v(S ∪
{j})− v(S ∪ {k}) + v(S ∪ {j, k}) = 0 when S includes either of j and k. The last equality follows
by definition of Hv

S.
The above derivation immediately implies that we can write the Hessian matrix of Gv(x) as a

non-negative weighted sum of discrete Hessian matrices.

▽2Gv(x) =
∑

S⊆[m]

∏

ℓ∈S

(1− e−xℓ)
∏

ℓ∈[m]\S

e−xℓ Hv
S (11)

A non-negative weighted-sum of negative semi-definite matrices is negative semi-definite. This
completes the proof of the claim.
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A Combinatorial Auctions with Explicit Coverage Valuations

In this section, we apply our mechanism to explicitly represented coverage valuations. This demon-
strates the utility of our mechanism in a concrete, non-oracle-based setting, and moreover allows
us to establish an interesting separation result. Specifically, we show that (1) The (1 − 1/e)-
approximate mechanism of Theorem 4.1 can be implemented in expected polynomial-time for this
problem, and (2) No polynomial-time, universally-truthful, VCG-based9 mechanism guarantees an
approximation ratio of o(n), unless NP ⊆ P/poly. The approximation ratio of 1− 1/e is the best
possible in polynomial-time for this problem — even without incentive constraints — assuming
P 6= NP [19]. Ours is the first separation of its kind in the computational complexity model.10

An n player, m item instance combinatorial auctions with explicit coverage valuations is de-
scribed as follows. For each player i, there is a finite set Li, and a family Ai

1, . . . , A
i
m of subsets

of Li. The valuation function of player i is then defined as vi(S) = | ∪j∈S Ai
j|. The set system(

Li,
{
Ai

j

}m

j=1

)
is encoded explicitly as a bipartite graph.

A.1 A Truthful-in-Expectation Mechanism

As discussed previously, MRS valuations include all coverage valuations. Therefore, in order to
implement the MIDR allocation rule of Section 4 for this problem, it suffices to answer lottery-
value queries in time polynomial in the number of bits encoding the instance.

Claim A.1. In combinatorial auctions with explicit coverage valuations, lottery-value queries can
be answered in time polynomial in the length of the encoding of the instance.

Proof. Let v : 2[m] → R
+ be a coverage valuation presented explicitly as a set system (L, {Aj}mj=1),

and let x ∈ [0, 1]m. Let S be a random set that includes each j ∈ [m] independently with probability
xj. The outcome of the lottery value oracle of v evaluated at x is equal to the sum, over all ℓ ∈ L,
of the probability that ℓ is “covered” by S – specifically,

∑
ℓ∈L Pr[ℓ ∈ ∪j∈SAj ]. It is easy to verify

that a term of this sum can be expressed as the following closed form expression.

Pr[ℓ ∈ ∪j∈SAj ] = 1−
∏

j:Aj∋ℓ

(1− xj)

This expression can be evaluated in time polynomial in the representation of the set system. This
completes the proof.

Claim A.1 implies the following Theorem.

Theorem A.2. There is an expected polynomial-time, (1−1/e)-approximate, truthful-in-expectation
mechanism for combinatorial auctions with explicit coverage valuations.

9A universally-truthful mechanism is VCG-based if it is a randomization over deterministic truthful mechanisms
that each implement a maximal in range allocation rule — the special case of MIDR where each distribution in the
distributional range is supported on a single allocation.

10We note that this separation is meaningful because there are no known universally-truthful polynomial-time mech-
anisms — VCG-based or otherwise — for this problem that achieve an approximation ratio better than min(n,

√
m).

In particular, the result of [8] uses demand queries, which can not be answered in polynomial time for explicit coverage
valuations by the results of [19] and [16].
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A.2 A Lower-bound on Universally Truthful VCG-Based Mechanisms

We use the following special case of [5, Theorem 1.2]: If a succinct combinatorial auction problem
satisfies the regularity conditions on the valuations defined in [5], and moreover the 2-player version
of the problem is APX hard, then no polynomial-time, universally-truthful, VCG-based mechanism
guarantees an approximation ratio of o(n).

It is routine to verify the regularity assumptions of [5] for explicit coverage valuations. APX-
hardness of the 2-player problem follows by an elementary reduction from the APX-hard problem
max-cut. Given an instance of max-cut on a graph G = (V,E), we let [m] = V , L1 = L2 = E. For
e ∈ E, i ∈ {1, 2}, and j ∈ V , we let e ∈ Ai

j if j is one of the endpoints of edge e. It is easy to check
that the welfare maximizing allocation of the resulting 2-player instance of combinatorial auctions
corresponds to the maximum cut of G. Moreover, using the fact that the optimal objective value
of max-cut is at least |E|/2, it is elementary to verify that the reduction preserves hardness of
approximation up to a constant factor. Therefore, combinatorial auctions with explicit coverage
valuations and 2 players is APX hard. This yields the following Theorem.

Theorem A.3. No universally truthful, polynomial-time, VCG-based mechanism for combinatorial
auctions with explicit coverage valuations achieves a approximation ratio of o(n), unless NP ⊆
P/poly.

B Solving The Convex Program

In this section, we overcome some technical difficulties related to the solvability of convex programs.
We show in Section B.1 that, in the lottery-value oracle model, the four conditions for “solvability”
of convex programs, as stated in Fact C.3, are easily satisfied for convex program (7). However,
an additional challenge remains: “solving” a convex program – as in Definition C.2 – returns an
approximately optimal solution. Indeed the optimal solution of a convex program may be irrational
in general, so this is unavoidable.

We show how to overcome this difficulty if we settle for polynomial runtime in expectation.
While the optimal solution x∗ of (7) cannot be computed explicitly, the random variable rpoiss(x

∗)
can be sampled in expected polynomial-time. The key idea is the following: sampling the random
variable rpoiss(x

∗) rarely requires precise knowledge of x∗. Depending on the coin flips of rpoiss, we
decide how accurately we need to solve convex program (7) in order compute rpoiss(x

∗). Roughly
speaking, we show that the probability of requiring a (1 − ǫ)-approximation falls exponentially in
1
ǫ
. As a result, we can sample rpoiss(x

∗) in expected polynomial-time. We implement this plan in
Section B.2 under the simplifying assumption that convex program (7) is well-conditioned – i.e.
is “sufficiently concave” everywhere. In Section B.3, we show how to remove that assumption by
slightly modifying our algorithm.

B.1 Approximating the Convex Program

Claim B.1. There is an algorithm for Combinatorial Auctions with MRS valuations in the lottery-
value oracle model that takes as input an instance of the problem and an approximation parameter
ǫ > 0, runs in poly(n,m, log(1/ǫ)) time, and returns a (1 − ǫ)-approximate solution to convex
program (7).
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It suffices to show that the four conditions of Fact C.3 are satisfied in our setting. The first
three are immediate from elementary combinatorial optimization (see for example [28]). It remains
to show that the first-order oracle, as defined in Fact C.3, can be implemented in polynomial-time
in the lottery-value oracle model. The objective f(x) of convex program (7) can, by definition, be
written as

f(x) =
∑

i

Gvi(xi),

where vi is the valuation function of player i, xi is the vector (xi1, . . . , xim), and and Gvi is as
defined in (10). By definition, Gvi(xi) is the outcome of querying the lottery-value oracle of player
i with (1− e−xi1 , . . . , 1− e−xim) . Therefore, we can evaluate f(x) using n lottery-value query, one
for each player. It remains to show that we can also evaluate the (multi-variate) derivative ▽f(x)
of f(x). Using definition (10), we take the partial derivative corresponding to xij . By rearranging
the sum appropriately, we get that

∂f

∂xij
(x) = e−xij

(
Fvi

(
(1− e−xi1 , . . . , 1− e−xim) ∨ 1j

)
− Fvi

(
(1− e−xi1 , . . . , 1− e−xim) ∧ 0j

))
,

where Fvi is as defined in Equation (3). Here, ∨ and ∧ denote entry-wise minimum and maximum
respectively, 1j denotes the vector with all entries equal to 0 except for a 1 at position j, and 0j
denotes the vector with all entries equal to 1 except for a 0 at position j. It is clear that this entry
of the gradient of f can be evaluated using two lottery-value queries. Therefore, ▽f(x) can be
evaluated using 2n lottery-value queries, 2 for each player. This completes the proof of Claim B.1.

B.2 The Well-Conditioned Case

In this section, we make the following simplifying assumption: The objective function f(x) of
convex program (7), when restricted to any line in the feasible set R, has a second derivative of

magnitude at least λ =
∑n

i=1 vi([m])

2poly(n,m) everywhere, where the polynomial in the denominator may
be arbitrary. This is equivalent to requiring that every eigenvalue of the Hessian matrix of f(x)
has magnitude at least λ when evaluated at any point in R. Under this assumption, we prove
Lemma B.2.

Lemma B.2. Assume the magnitude of the second derivative of f(x) is at least λ =
∑n

i=1 vi([m])

2poly(n,m)

everywhere. Algorithm 1, instantiated for combinatorial auctions with r = rpoiss, can be simulated
in time polynomial in n and m in expectation.

Let x∗ be the optimal solution to convex program (7). Algorithm 1 allocates items according
to the distribution rpoiss(x

∗). The Poisson rounding scheme, as described in Algorithm 2, requires
making m independent decisions, one for each item j. Therefore, we fix item j and show how to
simulate this decision. It suffices to do the following in expected polynomial-time: flip uniform coin
pj ∈ [0, 1], and find the minimum index a(j) (if any) such that

∑
i≤a(j)(1− e−x∗ij) ≥ pj. For most

realizations of pj, this can be decided using only coarse estimates x̃ij to x∗ij. Assume we have an
estimation oracle for x∗ that, on input δ, returns a δ-estimate x̃ of x∗: Specifically, x̃ij −x∗ij ≤ δ for

each i. When pj falls outside the “uncertainty zones” of x̃, such as when |pj−
∑

i′≤i(1−e−x̃i′j )| > δn
for each i ∈ [n], it is easy to see that we can correctly determine a(j) by using x̃ in lieu of x. The total
measure of the uncertainty zones of x̃ is at most 2n2δ, therefore pj lands outside the uncertainty
zones with probability at least 1−2n2δ. The following claim shows that if the estimation oracle for
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x∗ can be implemented in time polynomial in log(1/δ), then we can simulate the Poisson rounding
procedure in expected polynomial-time.

Claim B.3. Let x∗ be the optimal solution of convex program (7). Assume access to a subroutine
B(δ) that returns a δ-estimate of x∗ in time poly(n,m, log(1/δ)). Algorithm (1) with r = rpoiss can
be simulated in expected poly(n,m) time.

Proof. It suffices to show that we can simulate the allocation of an item j by Algorithm (2) on
input x∗. The simulation proceeds as follows: Draw pj ∈ [0, 1] uniformly at random. Start with

δ = δ0 = 1
2n2 . Let x̃ = B(δ). While |pj −

∑
i′≤i(1 − e−x̃i′j )| ≤ δn for some i ∈ [n] (i.e. pj may fall

inside an “uncertainty zone”) do the following: let δ = δ/2, x̃ = B(δ) and repeat. After the loop
terminates, we have a sufficiently accurate estimate of x∗ to calculate a(j) as in Algorithm (2).

It is easy to see that the above procedure is a faithful simulation of Algorithm (2) on x∗.
It remains to bound its expected running time. Let δk = 1

2k+1n2 denote the value of δ at the kth

iteration. By assumption, the kth iteration takes poly(n,m, log(1/δk)) = poly(n,m, log(2k+1n2)) =
poly(n,m, k) time. The probability this procedure does not terminate after k iterations is at most
2n2δk = 1/2k. Taken together, these two facts and a simple geometric summation imply that the
expected runtime is polynomial in n and m.

It remains to show that the estimation oracle B(δ) can be implemented in poly(n,m, log(1/δ))
time. At first blush, one may expect that the ellipsoid method can be used in the usual manner
here. However, there is one complication: we require an estimate x̃ that is close to x∗ in solution
space rather than in terms of objective value. Using our assumption on the curvature of f(x),
we will reduce finding a δ-estimate of x∗ to finding an 1 − ǫ(δ) approximate solution to convex
program (7). The dependence of ǫ on δ will be such that ǫ ≥ poly(δ)/2poly(n,m), thereby we can
invoke Claim B.1 to deduce that B(δ) can be implemented in poly(n,m, log(1/δ)) time.

Let ǫ = ǫ(δ) = δ2λ
2
∑

i vi([m]) . Plugging in the definition of λ, we deduce that ǫ ≥ δ2/2poly(n,m),

which is the desired dependence. It remains to show that if x̃ is (1 − ǫ)-approximate solution to
(7), then x̃ is also a δ-estimate of x∗.

Using the fact that f(x) is concave, and moreover its second derivative has magnitude at least
λ, it a simple exercise to bound distance of any point x from the optimal point x∗ in terms of its
sub-optimality f(x∗)− f(x), as follows:

f(x∗)− f(x) ≥ λ

2
||x− x∗||2. (12)

Assume x̃ is a (1− ǫ)-approximate solution to (7). Equation (12) implies that

||x̃− x∗||2 ≤ 2

λ
ǫf(x∗) =

δ2∑
i vi([m])

f(x∗) ≤ δ2,

where the last inequality follows from the fact that
∑

i vi([m])) is an upper-bound on the optimal
value f(x∗). Therefore, ||x− x∗|| ≤ δ, as needed. This completes the proof of Lemma B.2.

B.3 Guaranteeing Good Conditioning

In this section, we propose a modification r+poiss of the Poisson rounding scheme rpoiss. We will

argue that r+poiss satisfies all the properties of rpoiss established so far, with one exception: the
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approximation guarantee of Lemma 4.3 is reduced to 1 − 1/e − 2−2mn. Then we will show that
r+poiss satisfies the curvature assumption of Lemma B.2, demonstrating that said assumption may

be removed. Therefore Algorithm 1, instantiated with r = r+poiss for combinatorial auctions with

MRS valuations in the lottery-value oracle model, is (1 − 1/e − 2−2mn) approximate and can be
implemented in expected poly(n,m) time. Finally, we show in Remark B.4 how to recover the
2−2mn term to get a clean 1− 1/e approximation ratio, as claimed in Theorem 4.1.

Let µ = 2−2mn. We define r+poiss in Algorithm 3. Intuitively, r+poiss at first makes a tentative
allocation using rpoiss. Then, it cancels said allocation with small probability µ. Finally, with
probability β it chooses a random “lucky winner” i∗ and gives him all the items. β is defined
as the fraction of items allocated in the original tentative allocation. The motivation behind this
seemingly bizarre definition of r+poiss is purely technical: as we will see, it can be thought of as
adding “concave noise” to rpoiss.

Algorithm 3 Modified Poisson Rounding Scheme r+poiss

Input: Fractional allocation x with
∑

i xij ≤ 1 for all j, and 0 ≤ xij ≤ 1 for all i, j.
Output: Feasible allocation (S1, . . . , Sn).
1: Let (S1, . . . , Sn) ∼ rpoiss(x).

2: Let β =
∑

i |Si|
m

.
3: Draw q1 ∈ [0, 1] uniformly at random.
4: if q1 ∈ [0, µ] then
5: Let (S1, . . . , Sn) = (∅, ∅, . . . , ∅).
6: Draw q2 ∈ [0, 1] uniformly at random.
7: if q2 ∈ [0, β] then
8: Choose a player i∗ uniformly at random.
9: Let Si∗ = [m], and Si = ∅ for all i 6= i∗.

10: end if
11: end if

We can write the expected welfare E[w(r+poiss(x))] as follows. We use linearity of expectations
and the fact that β is independent of the choice of i∗ to simplify the expression.

E[w(r+poiss(x))] = E[(1− µ)w(rpoiss(x)) + µβvi∗([m])]

= (1− µ) E[w(rpoiss(x))] + µE[β]E[vi∗([m])]

= (1− µ) E[w(rpoiss(x))] + µE[β]

∑
i vi([m])

n

Observe that rpoiss allocates an item j with probability
∑

i(1−e−xij ). Therefore, the expectation

of β is
∑

ij(1−e
−xij )

m
. This gives:

E[w(r+poiss(x))] =(1− µ) E[w(rpoiss(x))] +
µ

mn

∑

i

vi([m])
∑

i,j

(1− e−xij ). (13)

It is clear that the expected welfare when using r = r+poiss is within 1 − µ = 1 − 2−2mn of the
expected welfare when using r = rpoiss in the instantiation of Algorithm 1. Using Lemma 4.3,
we conclude that r+poiss is a (1 − 1/e − 2−2mn)-approximate rounding scheme. Moreover, using
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Lemma 4.2, as well as the fact that (1 − e−xij ) is a concave function, we conclude that r+poiss is a

convex rounding scheme. Therefore, this establishes the analogues of Lemmas 4.3 and4.2 for r+poiss.

It is elementary to verify that our proof of Lemma B.2 can be adapted to r+poiss as well.

It remains to show that r+poiss is “sufficiently concave”. This would establish that the condi-

tioning assumption of Section B.2 is unnecessary for r+poiss. We will show that expression (13) is

a concave function with curvature of magnitude at least λ =
∑n

i=1 vi([m])
emn22mn everywhere. Since the

curvature of concave functions is always non-positive, and moreover the curvature of the sum of
two functions is the sum of their curvatures, it suffices to show that the second term of the sum (13)
has curvature of magnitude at least λ. We note that the curvature of

∑
ij(1− e−xij ) is at least e−1

over x ∈ [0, 1]n×m. Therefore, the curvature of the second term of (13) is at least

µ

mn

(
∑

i

vi([m])

)
e−1 = λ

as needed.

Remark B.4. In this section, we sacrificed 2−2mn in the approximation ratio in order to guarantee
expected polynomial runtime of our algorithm even when convex program (7) is not well-conditioned.
This loss can be recovered to get a clean 1 − 1/e approximation as follows. Given our (1 − 1/e −
2−2mn)-approximate MIDR algorithm A, construct the following algorithm A′: Given an instance
of combinatorial auctions, A′ runs A on the instance with probability 1 − e2−2mn, and with the
remaining probability solves the instance optimally in exponential time O(22mn). It was shown in
[12] that a random composition of MIDR mechanisms is MIDR, therefore A′ is MIDR. The expected
runtime of A′ is bounded by the expected runtime of A plus e2−2mn ·O(22mn) = O(1). Finally, the
expected approximation of A′ is the weighted average of the approximation ratio of A and the optimal
approximation ratio 1, and is at least (1− e2−2mn)(1− 1/e − 2−2mn) + e2−2mn ≥ 1− 1/e.

C Additional Preliminaries

C.1 Matroid Theory

In this section, we review some basics of matroid theory. For a more comprehensive reference, we
refer the reader to [26].

A matroid M is a pair (X ,I), where X is a finite ground set, and I is a non-empty family of
subsets of X satisfying the following two properties. (1) Downward closure: If S belongs to I, then
so do all subsets of S. (2) The Exchange Property: Whenever T, S ∈ I with |T | < |S|, there is
some x ∈ S \ T such that T ∪ {x} ∈ I. Elements of I are often referred to as the independent sets
of the matroid. Subsets of X that are not in I are often called dependent.

We associate with matroid M a set function rankM : 2X → N, known as the rank function of
M , defined as follows: rankM (A) = maxS∈I |S ∩A|. Equivalently, the rank of set A in matroid M
is the maximum size of an independent set contained in A. A set function f on a ground set X is
a matroid rank function if there exists a matroid M on the same ground set such that f = rankM .
Matroid rank functions are monotone (f(S) ≤ f(T ) when S ⊆ T ), normalized (f(∅) = 0), and
submodular (f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T ) for all S and T ).

For a matroid M = (X ,I) and S ⊆ X , we define the contraction of M by S, denoted by M/S.
M/S is a pair (X \ S,I ′), where I ′ is the following family of subsets of X \ S: A set T ⊆ X \ S is
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in I ′ if and only if rankM (S ∪ T ) − rankM(S) = |T |. For each matroid M = (X ,I) and S ⊆ X ,
the contraction M/S is also a matroid.

C.2 Convex Optimization

In this section, we distill some basics of convex optimization. For more details, see [2].

Definition C.1. A maximization problem is given by a set Π of instances (P, c), where P is a
subset of some euclidean space, c : P → R, and the goal is to maximize c(x) over x ∈ P. We say Π
is a convex maximization problem if for every (P, c) ∈ Π, P is a compact convex set, and c : P → R

is concave. If c : P → R
+ for every instance of Π, we say Π is non-negative.

Definition C.2. We say a non-negative maximization problem Π is R-solvable in polynomial time
if there is an algorithm that takes as input the representation of an instance I = (P, c) ∈ Π — where
we use |I| to denote the number of bits in the representation — and an approximation parameter
ǫ, and in time poly(|I|, log(1/ǫ)) outputs x ∈ P such that c(x) ≥ (1− ǫ)maxy∈P c(y).

Fact C.3. Consider a non-negative convex maximization problem Π. If the following are satisfied,
then Π is R-solvable in polynomial time using the ellipsoid method. We let I = (P, c) denote an
instance of Π, and let m denote the dimension of the ambient euclidean space.

1. Polynomial Dimension: m is polynomial in |I|.

2. Starting ellipsoid: There is an algorithm that computes, in time poly(|I|), a point c ∈ R
m,

a matrix A ∈ R
m×m, and a number V ∈ R such that the following hold. We use E(c,A) to

denote the ellipsoid given by center c and linear transformation A.

(a) E(c,A) ⊇ P
(b) V ≤ volume(P)

(c) volume(E(c,A))
V ≤ 2poly(|I|)

3. Separation oracle for P: There is an algorithm that takes takes input I and x ∈ Rm, and
in time poly(|I|, |x|) where |x| denotes the size of the representation of x, outputs “yes” if
x ∈ P, otherwise outputs h ∈ R

m such that hTx < hT y for every y ∈ P.

4. First order oracle for c: There is an algorithm that takes input I and x ∈ R
m, and in time

poly(|I|, |x|) outputs c(x) ∈ R and ▽c(x) ∈ R
m.

D Additional Technical Details and Commentary

D.1 Computing Payments

In this section, we show how to efficiently compute truth-telling payments for our mechanism. In
fact, as shown below, this is possible for any maximal in distributional range allocation rule for
combinatorial auctions given as a black box.

Lemma D.1. Let A be an MIDR allocation rule for combinatorial auctions, and let v1, . . . , vn
be input valuations. Assume black-box access to A, and value oracle access to {vi}ni=1. We can
compute, with poly(n) over-head in runtime, payments p1, . . . , pn such that E[pi] equals the VCG
payment of player i for MIDR allocation rule A on input v1, . . . , vn.
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Proof. Without loss of generality, it suffices to show how to compute p1. Let 0 : 2[m] → R be the
valuation evaluating to 0 at each bundle. Recall (see e.g. [25]) that the VCG payment of player 1
is equal to

E
T∼A(0,v2,...,vn)

[
n∑

i=2

vi(Ti)

]
− E

S∼A(v1,...,vn)

[
n∑

i=2

vi(Si)

]
. (14)

Let (S1, . . . , Sn) be a sample from A(v1, . . . , vn), and let (T1, . . . , Tn) be a sample from
A(0, v2, . . . , vn). Let p1 =

∑n
i=2 vi(Ti) −

∑n
i=2 vi(Si). Using linearity of expectations, it is easy to

see that the expectation of p1 is equal to the expression in (14). This completes the proof.

We note that the mechanism resulting from Lemma D.1 is individually rational in expectation,
and each payment is non-negative in expectation. We leave open the question of whether it is
possible to enforce individual rationality and non-negative payments for our mechanism ex-post.

D.2 Beyond Matroid Rank Sum Valuations

In this section, we discuss the prospect of extending our result beyond matroid rank sum valuations.
First, we argue that our restriction to a subset of submodular functions is not merely an artifact
of our analysis. Specifically, we exhibit a submodular function that is not in the matroid rank
sum family, and moreover the Poisson rounding scheme can be non-convex when a player has this
function as their valuation. Then, we briefly argue that our mechanism may yet apply to some
valuations that are not matroid rank sums.

We define a budget additive function v on four items {1, 2, 3, 4}. Three of the items are “small”,
one item is “big”, and the budget equals the value of the big item.

v(S) =





1 if S = {j} for j ∈ {1, 2, 3} ,
2 if S = {4} ,
min

(∑
j∈S v({j}), 2

)
otherwise

We can show that v is not a matroid rank sum function by invoking Claim 4.5. Specifically,
one can manually check that the discrete Hessian matrix Hv

∅ of v at ∅ (see Definition 4.4) is not
negative semi-definite. Moreover, for a player with valuation v, Poisson rounding renders the
player’s expected value function Gv(x) (Equation (10)) non-concave in x: By Equation (11), the
Hessian matrix of Gv(x) approaches the discrete Hessian Hv

∅ as x tends to zero. Since Hv
∅ is not

negative semi-definite, Gv(x) is non-concave for x near zero. We note that we can construct a large
family of similar counter examples by simply increasing the number of “small items” in v.

Finally, we observe that our mechanism may apply to some valuations that are not matroid
rank sums. We observe that we only used two properties of MRS functions: their discrete Hessian
matrices are negative semi-definite (Claim 4.5, which is used to prove Lemma 4.2), and they are
submodular (used to prove Lemma 4.3). Therefore, our result extends directly to the class of all
set functions satisfying both of these properties. We leave open the question of whether there exist
interesting functions in this class that are not matroid rank sums. More generally, understanding
the class of set functions with negative semi-definite discrete Hessian matrices — in particular the
relationship of this class to other classes of set functions studied in the literature — may be an
interesting direction for future inquiry.
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