
Logical Methods in Computer Science
Vol. 4 (1:5) 2008, pp. 1–1–20
www.lmcs-online.org

Submitted Jul. 25, 2007
Published Mar. 19, 2008LOWER BOUNDS FOR COMPLEMENTATION OF ω -AUTOMATA VIATHE FULL AUTOMATA TECHNIQUE ∗QIQI YANDepartment of Computer Siene and Engineering, Shanghai Jiao Tong University, 200240, Shang-hai, P.R. Chinae-mail address: ontat�qiqiyan.omAbstrat. In this paper, we �rst introdue a lower bound tehnique for the state om-plexity of transformations of automata. Namely we suggest �rst onsidering the lass offull automata in lower bound analysis, and later reduing the size of the large alphabetvia alphabet substitutions. Then we apply suh tehnique to the omplementation of non-deterministi ω-automata, and obtain several lower bound results. Partiularly, we provean Ω((0.76n)n) lower bound for Bühi omplementation, whih also holds for almost ev-ery omplementation or determinization transformation of nondeterministi ω-automata,and prove an optimal (Ω(nk))n lower bound for the omplementation of generalized Bühiautomata, whih holds for Streett automata as well.1. IntrodutionThe omplementation problem of nondeterministi ω-automata, i.e. nondeterministiautomata over in�nite words, has various appliations in formal veri�ation. For examplein automata-theoreti model heking, in order to hek whether a system represented byautomaton A1 satis�es a property represented by automaton A2, one heks that the inter-setion of A1 with an automaton that omplements A2 is an automaton aepting the emptylanguage [Kur94, VW94℄. In suh a proess, several types of nondeterministi ω-automataare onerned, inluding Bühi, generalized Bühi, Rabin, Streett et., and the omplexityof omplementing these automata has aught great attention.The omplementation of Bühi automata has been investigated for over forty years[Var07℄. The �rst e�etive onstrution was given in [Bü62℄, and the �rst exponentialonstrution was given in [SVW85℄ with a 2O(n2) state blow-up (n is the number of statesof the input automaton). Even better onstrutions with 2O(n log n) state blow-ups weregiven in [Saf88, Kla91, KV01℄, whih math with Mihel's n! = 2Ω(n log n) lower bound2000 ACM Subjet Classi�ation: F.4.1, F.4.3.Key words and phrases: full automata, state omplexity, automata transformation, Bühi omplementa-tion, ω-automata.

∗ A preliminary version of this paper appears in the proeedings of the 33rd International Colloquium onAutomata, Languages and Programming, 2006.Supported by NSFC No. 60273050.
LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-4 (1:5) 2008

c© Q. Yan
CC© Creative Commons

http://creativecommons.org/about/licenses


2 Q. YAN[Mi88℄, and were thus onsidered optimal. However, a loser look reveals that the blow-upof the onstrution in [KV01℄ is (6n)n, while Mihel's lower bound is only roughly (n/e)n =
(0.36n)n, leaving a big exponential gap hiding in the asymptoti notation1. Motivated bythis omplexity gap, the onstrution in [KV01℄ was further re�ned in [FKV06℄ to (0.97n)n.On the other hand, Mihel's lower bound was never improved.For generalized Bühi, Rabin and Streett automata, the best known onstrutions arein [KV05b, KV05a℄, whih are 2O(n log nk), 2O(nk log n) and 2O(nk log nk) respetively. Herestate blow-ups are measured in terms of both n and k, where k is the index of the inputautomaton. Optimality problems of these onstrutions have been vastly open, beause only
2Ω(n log n) lower bounds were known by variants of Mihel's proof [Löd99℄.What remains missing are stronger lower bound results. Tighter lower bounds usuallylead us into better understanding of the intriay of the omplementation of nondeterministi
ω-automata, and are the main onern of this paper. Suh understanding an suggestmethods to further optimize the onstrutions, or to irumvent those di�ult ases inpratie.To understand why we have so few strong lower bounds, we observe that at the ore ofalmost every known lower bound is Mihel's result, whih was obtained in the traditionalway. That is, one �rst onstruts a partiular family of automata (An)n≥1, and then provesthat omplementing eah An requires a large state blow-up. The An+1 of Mihel's automatafamily is depited in Figure 1. Although eah An+1 has a simple struture, it is not straight-forward to see what language it aepts, and nor is it lear at all how we an work with thisautomaton for lower bound.
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Figure 1: Mihel's Automata ClassIn many ases, identifying suh an automata family is di�ult, and is the main obsta-le towards lower bounds. In this paper, we propose a new tehnique to irumvent thisdi�ulty. Namely, we suggest �rst onsidering the family of full automata in lower boundanalysis, and later reduing the size of the large alphabet via alphabet substitutions. Asimple demonstration of suh tehnique is presented in Setion 3.With the help of full automata, we tighten the state omplexity BC(n) of Bühi om-plementation from (0.36n)n ≤ BC(n) ≤ (0.97n)n to (0.76n)n ≤ BC(n) ≤ (0.97n)n. Sur-prisingly, this (0.76n)n lower bound also holds for every omplementation or determinizationtransformation onerning Bühi, generalized Bühi, Rabin, Streett, Muller, and parity au-tomata. As to the omplementation of generalized Bühi automata, we prove an (Ω(nk))nlower bound, mathing with the (O(nk))n upper bound in [KV05b℄. This lower bound alsoholds for the omplementation of Streett automata and the determinization of generalized1In ontrast, for the omplementation of nondeterministi �nite automata over �nite words, the 2n blow-up of the subset onstrution [RS59℄ was justi�ed by a tight lower bound [SS78℄, whih works even if thealphabet onerned is binary [Jir05℄.



LOWER BOUNDS FOR COMPLEMENTATION OF ω -AUTOMATA VIA THE FULL AUTOMATA TECHNIQUE ∗3Bühi automata into Rabin automata. A summary of our lower bounds is given in Setion6.Full Automata and Sakoda and Sipser's Languages. It turns out that the notionof full automata is similar to Sakoda and Sipser's languages in [SS78℄. Their language Bnatually orresponds to the ∆-graphs of the words aepted by some full automaton. Also aspointed to us by Christos A. Kapoutsis, the tehnique of alphabet substitution was somewhatimpliit in Sakoda and Sipser's paper (but presented in a somewhat obsure way, refer tothe paragraph before their Theorem 4.3.2). So the full automata tehnique is more like anew treatment of some tehniques in the Sakoda and Sipser's paper, rather than a totallynew invention. Compared to Sakoda and Sipser's languages, the notion of full automataenjoys a simple de�nition and is very handy to use. It is also more readily to be extendedto other kinds of automata like alternating automata.For unlear reasons, Sakoda and Sipser's languages were rarely applied to �elds otherthan 2-way automata after their paper. We hope that our treatment will make a learexposition of the tehniques and demonstrate their usefulness in problems on automata overone-way inputs as well. 2. Basi DefinitionsA (nondeterministi) automaton is a tuple A = (Σ, S, I,∆, ∗) with alphabet Σ, �nitestate set S, initial state set I ⊆ S, transition relation ∆ ⊆ S × Σ × S and ∗ some extraomponents. Partiularly A is deterministi if |I| = 1 and for all p ∈ S and a ∈ Σ,
|{q ∈ S | 〈p, a, q〉 ∈ ∆}| ≤ 1.For a word w = a(0)a(1) . . . a(l−1) ∈ Σ∗ with length(w) = l ≥ 0, a �nite run of A fromstate p to q over w is a �nite state sequene ρ = ρ(0)ρ(1) . . . ρ(l) ∈ S∗ suh that ρ(0) = p,
ρ(l) = q and 〈ρ(i), a(i), ρ(i + 1)〉 ∈ ∆ for all 0 ≤ i < l. We say that ρ visits a state set T if
ρ(i) ∈ T for some 0 ≤ i ≤ l. We write p

w
−→ q if a �nite run from p to q over w exists, and

p
w

−→
T

q if in addition the run visits T .A (Nondeterministi) Finite Word Automaton (NFW for short) is an automaton A =
(Σ, S, I,∆, F ) with �nal state set F ⊆ S. A �nite word w is aepted by A if there is a�nite run over w from an initial state to a �nal state. The language aepted by A, denotedby L(A), is the set of words aepted by A, and its omplement Σ∗\L(A) is denoted by
LC(A).For an ω-word α = α(0)α(1) · · · ∈ Σω, i.e., an in�nite sequene of letters in Σ, a (in�nite)run of A over α is an in�nite state sequene ρ = ρ(0)ρ(1) · · · ∈ Sω suh that ρ(0) ∈ I and
〈ρ(i), α(i), ρ(i + 1)〉 ∈ ∆ for all i ≥ 0. We let Occ(ρ) = {q ∈ S | ρ(i) = q for some i ∈ N},
Inf(ρ) = {q ∈ S | ρ(i) = q for in�nitely many i ∈ N}, and write ρ[l1, l2] to denote the in�x
ρ(l1)ρ(l1 + 1) . . . ρ(l2) of ρ.An (nondeterministi) ω-automaton is an automaton A = (Σ, S, I,∆, Acc) with aep-tane ondition Acc, whih is used to deide if a run ρ of A is suessful. There are manytypes of ω-automata onsidered in the literature [Tho90℄. Here we onsider six of the mostommon types:

• Bühi automaton, where Acc = F ⊆ S is a �nal state set, and ρ is suessful if
Inf(ρ) ∩ F 6= ∅.



4 Q. YAN
• generalized Bühi automaton, where Acc = {F1, . . . , Fk} is a list of �nal state sets,and ρ is suessful if Inf(ρ) ∩ Fi 6= ∅ for all 1 ≤ i ≤ k.
• Rabin automaton, where Acc = {〈G1, B1〉, . . . , 〈Gk, Bk〉} is a list of pairs of statesets, and ρ is suessful if for some 1 ≤ i ≤ k, Inf(ρ)∩Gi 6= ∅ and Inf(ρ)∩Bi = ∅.
• Streett automaton, where Acc = {〈G1, B1〉, . . . , 〈Gk, Bk〉} is a list of pairs of statesets, and ρ is suessful if for all 1 ≤ i ≤ k, if Inf(ρ)∩Bi 6= ∅, then Inf(ρ)∩Gi 6= ∅.
• Muller automaton, where Acc = F ⊆ Powerset(S) is a set of state sets, and ρ issuessful if Inf(ρ) ∈ F .
• parity automaton, where Acc is a mapping c : S → {0 . . . l}, and ρ is suessful if

min{c(q)|q ∈ Inf(ρ)} is even.An ω-word α is aepted by A if it has a suessful run. The ω-language aepted by A,denoted by L(A), is the set of ω-words aepted by A, and its omplement Σω\L(A) isdenoted by LC(A). The number k, if de�ned, is alled the index of A.We refer to the above six types of ω-automata as the ommon types. Following theonvention in [KV05a℄, we will use aronyms like NBW, NGBW, NRW et. to refer toNondeterministi Bühi/generalized Bühi/Rabin/et. Word automata. Two simple fatsabout these ommon types of ω-automata are useful for us:fAt 2.1. [Löd99℄(1) For every NBW A and every ommon type T , there exists an Tautomaton A′ with the same number of states suh that A′ is equivalent to A.(2) For every deterministi ω-automaton A of a ommon type T whih is not Bühinor generalized Bühi, there exists a deterministi ω-automaton A′ of a ommon type (notneessarily also T ) with the same number of states (and index, if appliable) suh that A′omplements A.To visualize the behavior of automata over input words, we introdue the notion of ∆-graphs. If A = (Σ, S, I,∆, ∗) is an automaton, then for a �nite word w = a(0)a(1) . . . a(l −
1) ∈ Σ∗ of length l, or an ω-word w = a(0)a(1) · · · ∈ Σω of length l = ∞, the ∆-graph of wunder A is the direted graph GA

w = (V A
w , EA

w ) with vertex set V A
w = {〈p, i〉 | p ∈ S, 0 ≤ i ≤

l, i ∈ N} and edge set EA
w de�ned as: for all p, q ∈ S and 0 ≤ i < l, 〈〈p, i〉, 〈q, i + 1〉〉 ∈ EA

wi� 〈p, a(i), q〉 ∈ ∆. For a subset T of S, we say that a vertex 〈p, i〉 is a T -vertex if p ∈ T . Byde�nition p
w

−→ q i� there is a path (in the direted sense) in GA
w from 〈p, 0〉 to 〈q, length(w)〉and p

w
−→

T
q if furthermore the path visits some T -vertex.Finally we de�ne the state omplexity2 funtions. Assume that T is either NFW orsome ommon type of ω-automata. Then for a T automaton A, CT (A) is de�ned as theminimum number of states of a T automaton that omplements A, i.e., aepts LC(A). For

n ≥ 1, CT (n) is the maximum of CT (A) over all T automata with n states. If indies arede�ned for T , then CT (n, k) is the maximum of CT (A) over all T automata with n statesand index k.2In some literature, instead of merely ounting the number of states, sizes of transition relations et. arealso taken into aount to better measure the sizes of automata. Here we prefer state omplexity beause itis a measure easier to study, and its lower bound results usually imply lower bounds on �size� omplexity, ifthe automata witnessing the lower bound are over a not too large alphabet.



LOWER BOUNDS FOR COMPLEMENTATION OF ω -AUTOMATA VIA THE FULL AUTOMATA TECHNIQUE ∗53. The Full Automata TehniqueIn the reently emerging area of state omplexity (see [Yu05℄ for a survey) or in thetheory of ω-automata, we often onern proving theorems of suh �avor:Theorem 3.1. [Jir05℄ For eah n ≥ 1, there exists an NFW An with n states over {a, b}suh that CNFW(An) ≥ 2n.In other words, we want to prove a lower bound for the state omplexity of a transfor-mation (NFW omplementation in this ase, an be determinization et.), and furthermore,we hope that the automata family witnessing the lower bound ((An)n≥1 in this ase) isover a �xed small alphabet. Suh laims are usually di�ult to prove. The apparently easyTheorem 3.1 was not proved until 2005 by a very tehnial proof in [Jir05℄3, after the e�ortsin [SS78, Bir93, HK02℄. To understand the di�ulty involved, we �rst review the traditionalapproah people attempt at suh results:Step I: Identify an automata family (An)n≥1 with eah An having n states.Step II: Prove that to transform eah An needs a large state blow-up.Almost every known lower bound was obtained in this way, inluding Theorem 3.1 andthe aforementioned Mihel's lower bound. In suh an approah, Step I is well-known to bedi�ult. Identifying the suitable family (An)n≥1 requires both ingenuity and luk. Evenworse, most automata families that people try are natural ones with simple strutures, whilethe ones witnessing the desired lower bound ould be highly unnatural and omplex. Findingthe right family (An)n≥1 seems to be a major obstale towards lower bound results.Now we introdue the notion of full automata to irumvent this obstale.De�nition 3.2. Given state set S, initial state set I, and extra omponents ∗, a full automa-ton A = (Σ, S, I,∆, ∗) is an automaton with alphabet Σ = Powerset(S ×S) and transitionrelation ∆ de�ned as: for all p, q ∈ S and a ∈ Σ, 〈p, a, q〉 ∈ ∆ i� 〈p, q〉 ∈ a.By de�nition, the alphabet ontains every binary relation over S, and therefore is of abig size of 2|S|
2 . Due to suh rih alphabets, every automaton has some embedding in a fullautomaton with the same number of states. It is then not di�ult to see that transformingan automaton an be redued to transforming a full automaton, and full automata are themost di�ult automata to transform.To be spei�, if we onsider NFW omplementation, then:Theorem 3.3. For all n ≥ 1, CNFW(n) = CNFW(A) for some full NFW A with n states.The theorem follows from the following lemma.Lemma 3.4. If A1 is an NFW with n states, then there is a full NFW A2 with n statessuh that CNFW(A2) ≥ CNFW(A1).Proof. By de�nition of CNFW, it su�es to show that for some full NFW A2 with n states,if there is an NFW CA2 that omplements A2, then there is an NFW CA1 omplementing

A1 with the same number of states as CA2.Let A1 = (Σ1, S1, I1,∆1, F1), and onsider the full NFW A2 = (Σ2, S1, I1,∆2, F1) withrespet to S1, I1 and F1. For eah a1 ∈ Σ1, de�ne letter ∆1(a1) in Σ2 = P(S1 × S1) as:
〈p1, q1〉 ∈ ∆1(a1) i� 〈p1, a1, q1〉 ∈ ∆1, for all p1, q1 ∈ S1. By de�nition of full automata,3The result is atually slightly stronger in that his An has only one initial state. (In some literature
NFWs are not allowed to have multiple initial states.)
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〈p1, a2, q1〉 ∈ ∆2 i� 〈p1, q1〉 ∈ a2, for all p1, q1 ∈ S1, a2 ∈ Σ2. So we have 〈p1, a1, q1〉 ∈
∆1 i� 〈p1,∆1(a1), q1〉 ∈ ∆2, for all a1 ∈ Σ1, p1, q1 ∈ S1. For an arbitrary word α =
a(0)a(1) . . . a(l− 1) ∈ Σ∗

1, onsider word α′ = ∆1(a(0))∆1(a(1)) . . . ∆1(a(l− 1)) ∈ Σ∗
2. Thenevery state sequene ρ1 = ρ1(0)ρ1(1) . . . ρ1(l) ∈ S∗

1 is a run of A1 over α i� ρ1 is a run of A2over α′. Sine A1 and A2 share the same initial and �nal state sets, ρ1 is suessful i� ρ2 issuessful. So α ∈ L(A1) i� α′ ∈ L(A2).Let CA2 = (Σ2, SC , IC ,∆C , FC) be an NFW that omplements L(A2). So α′ ∈ L(A2)i� α′ /∈ L(CA2). De�ne CA1 to be the NFW (Σ1, SC , IC ,∆′
C , FC), where ∆′

C is de�ned as
〈p2, a1, q2〉 ∈ ∆′

C i� 〈p2,∆1(a1), q2〉 ∈ ∆C , for all p2, q2 ∈ SC and a1 ∈ Σ1. Similarly everystate sequene ρC = ρC(0)ρC (1) . . . ρC(l) ∈ S∗
C is a suessful run of CA2 over α′ i� ρC is asuessful run of CA1 over α. So α′ ∈ L(CA2) i� α ∈ L(CA1).Now for every α ∈ Σ∗

1, α ∈ L(A1) i� α /∈ L(CA1). Therefore CA1 with the same numberof states as CA2 omplements A1 as required.Theorem 3.3 implies that to prove a lower bound for NFW omplementation (withouttaking the size of the alphabet into aount), we an simply set (An)n≥1 to be some familyof full NFWs in Step I. Similarly, the same applies to NBW omplementation:Theorem 3.5. For all n ≥ 1, CNBW(n) = CNBW(A) for some full NBW A with n states.Now we apply full automata to obtain a simple proof of Theorem 3.1.Proof. (of Theorem 3.1) We �rst prove a 2n lower bound for CNFW(n). For eah n ≥ 1,let FAn = (Σn, Sn, In,∆n, Fn) be the full NFW with Sn = In = Fn = {s0, . . . , sn−1}. Itsu�es to prove that CNFW(FAn) ≥ 2n.For eah subset T ⊆ Sn, let Id(T ) denote the letter {〈q, q〉 | q ∈ T} and let uT = Id(T ),
vT = Id(Sn\T ). Figure 2(a) depits one example of uT vT 's ∆-graph. Sine all states in
FAn are both initial and �nal, a word w of length l is aepted by FAn i� there is a pathfrom an 〈si, 0〉 vertex to an 〈sj , l〉 vertex in the ∆-graph of w under FAn. In partiular
uT vT is not aepted by FAn. Suppose that some NFW CA omplements FAn. So for eah
T ⊆ Sn, there is a state q̂T of CA suh that q̂I

uT−→ q̂T and q̂T
vT−→ q̂F for some initial state q̂Iand �nal state q̂F of CA. If we prove that q̂T1 6= q̂T2 whenever T1 6= T2, then CA has at least

2n states as required. Suppose by ontradition that q̂T1 = q̂T2 for some T1 6= T2. W.l.o.g.there is a state s of FAn in T1\T2. Then s
uT1−→ s

vT2−→ s and hene uT1vT2 ∈ L(FAn). Onthe other hand, for some initial state q̂I and �nal state q̂F of CA, q̂I
uT1−→ q̂T1 = q̂T2

vT2−→ q̂F .So uT1vT2 ∈ L(CA), ontradition.The above proof is not fully satisfying in that the automata family witnessing thelower bound is over an exponentially growing alphabet. To �x a binary alphabet and proveTheorem 3.1, we introdue a Step III in whih we do �alphabet substitution�, as we nowillustrate.We �rst re�ne the above proof of CNFW(FAn) ≥ 2n by restriting the number of di�erentletters involved. For two words u, v ∈ Σ∗
n, we say that u is equivalent to v with respet to

FAn, or simply u ∼ v, if for all p, q ∈ Sn, p
u
→ q i� p

v
→ q. A little thought shows thatif we substitute eah Id(T ) letter used in the above proof by some equivalent words, theproof still works. First we onsider the alphabet {ci}0≤i<n with ci = Id(Sn\{si}). Then foreah T ⊆ Sn, Id(T ) ∼ Πs/∈T ci, the onatenation of all ci's with si /∈ T in lexiographialorder (any other �xed order will do). This is illustrated in Figure 2(b). Then onsider thealphabet {a, b} with a = {〈si+1, si〉 | 0 ≤ i < n − 1} ∪ {〈s0, sn−1〉} and b = Id(Sn\{s0}),
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bb (d) A4Figure 2: Examplesthen for eah 0 ≤ i < n, ci ∼ aiban−i, as illustrated in Figure 2(). So if we substitute eahletter Id(T ) in the above proof by the equivalent word Πsi /∈T aiban−i, the proof still works.After the above re�nement of the proof, the part of FAn related to letters other than
{a, b} is in fat irrelevant to the proof. So An = FAn ↾ {a, b}, the restrition of FAn to
{a, b}, or formally the NFW An = ({a, b}, Sn, In, ∆n ∩ (Sn ×{a, b}×Sn), Fn), also satis�esthat CNFW(An) ≥ 2n, as required (A4 is depited in 2(d)).We all the above tehnique of setting (An)n≥1 to be a family of full automata andadding the step of alphabet substitution the �full automata tehnique�. Setting (An)n≥1 tobe full automata is ruial here, whih in essene delays the trouble of identifying (An)n≥1to the later analysis of transforming full automata. This makes our life easier beause thelatter is usually playing with words, whih is learly easier than onstruting automata,espeially with the rih alphabet of full automata. As to the step of alphabet substitution,our experiene is that it ould be tehnial some time, but rarely di�ult.4. Bühi Complementation4.1. Kupferman and Vardi's Constrution. We �rst brie�y introdue the state-of-the-art onstrution for Bühi omplementation by Kupferman and Vardi in [FKV06℄, the ideaof whih is important in our lower bound. Di�erent from [FKV06℄, we will ontinue towork with our ∆-graphs rather than introduing the notion of run graphs. For x ∈ N, let
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[x] denote the set {0, 1, . . . , x} and let [x]odd and [x]even denote the sets of odd and evennumbers in [x] respetively.De�nition 4.1. Given an NBW A = (Σ, S, I,∆, F ) of n states, and an ω-word α, a o-Bühi ranking (C-Ranking for short) for GA

α (i.e. the ∆-graph of α under A) is a partialfuntion f from V A
α to the rank set [2n − 2] suh that:(i): For all verties 〈q, l〉 ∈ V A

α , f(〈q, l〉) is unde�ned i� there is no path (in the diretedsense) from some 〈qI , 0〉 vertex with qI ∈ I to 〈q, l〉.(ii): For all verties 〈q, l〉 ∈ V A
α , if f(〈q, l〉) is odd, then q /∈ F .(iii): For all edges 〈〈q, l〉, 〈q′, l + 1〉〉 ∈ EA

α , if f(〈q, l〉) is de�ned, then f(〈q, l〉) ≥
f(〈q′, l + 1〉).We say that f is odd if for every path in GA

α , there are in�nitely many verties that areassigned odd ranks by f .Lemma 4.2. [KV01℄ The ω-word α is not aepted by A i� there is an odd C-ranking for
GA

α .Proof. We prove the if diretion here to give a sense of the idea of C-ranking. For everyin�nite path from a 〈qI , 0〉 vertex for some qI ∈ I, the ranks along the path do not inreaseby (iii) and so will get trapped in some �xed rank from some point on. Sine f is odd, this�xed rank is odd, and thus by (ii), F -verties are never visited sine then. In other words,every run of A over α visits F �nitely often and hene α is not aepted by A.A level ranking4 for A is a partial funtion g : S −→ [2n − 2] suh that if g(q) is odd,then q /∈ F . Eah C-ranking an be �slied� into suh level rankings. It was shown in [KV01℄that existene of an odd C-ranking for GA
α an be deided by an NBW CA whih guessesan odd C-ranking level by level, and heks the validity in a loal manner. By Lemma 4.2,

CA omplements A. In the onstrution of CA, distint sets of states are used to handledi�erent level rankings, and the number of suh level rankings is the major fator of the
(6n)n blow-up.We say that a level ranking g for A is tight if (i): the maximum rank in the range of gis some odd number 2m − 1 in [2n − 2]odd, and (ii): for every j ∈ [2m]odd, there is a state qwith g(q) = j. In suh a ase, g is also alled a TL(m)-ranking (with 1 ≤ m < n). It wasfurther shown in [FKV06℄ that we an restrit attention to tight level rankings and use lessstates in CA. By a areful numerial analysis [FKV06℄, a (0.97)n upper bound was provedfor the number of states of CA and thus for Bühi omplementation.4.2. Lower Bound. We turn now to lower bound. By Theorem 3.5, it su�es to onsiderfull NBWs. We de�ne FBn for n > 1 to be the full NBW (Σn, Sn, In,∆n, Fn) with In =
{s0, . . . , sn−2}, Fn = {sf} and Sn = In ∪ Fn. We also use S′

n = In to denote the �main�states.We �rst try to onstrut an ω-word αn not aepted by FBn suh that a great number oftight level rankings would have to be present in every C-ranking for GFBn
αn

. Sine the numberof tight level rankings is the major fator of the state blow-up in Kupferman and Vardi'sonstrution, this would produe a hard ase for the onstrution. For suh purpose, we4Our de�nitions of level ranking and tight level ranking here are slightly di�erent from [FKV06℄.



LOWER BOUNDS FOR COMPLEMENTATION OF ω -AUTOMATA VIA THE FULL AUTOMATA TECHNIQUE ∗9onsider a speial lass of tight level rankings for FBn, Q-rankings. We say that a TL(m)-ranking g for FBn is a Q(m)-ranking if g (q) is de�ned for eah q ∈ S′
n and is unde�ned for

q = sf . We start de�ning our di�ult ω-word αn by de�ning its omposing segments.Lemma 4.3. For every pair of Q-rankings (f, g), there exists a word wf,g suh that:(i): For all p, q ∈ S′
n, p

wf,g
−→ q i� (fi(p) > fi+1(q) or fi(p) = fi+1(q) ∈ [2m]odd).(ii): For all p, q ∈ S′

n, p
wf,g
−→
Fn

q i� fi(p) > fi+1(q).(iii): For all p, q ∈ Sn, if p
wf,g
−→ q then p, q /∈ Fn.Proof. We �rst illustrate the onstrution using a typial example depited in Fig. 3. As inFig. 3, the verties of the ∆-graph of wf,g are separated by the wider spae below c(f, g)into two parts. We say that eah (si, j) vertex in the left part is ranked f(si) by f , andeah (si, j) vertex in the right part is ranked g(si) by g. So when one follows a path from aleftmost vertex v1 to a rightmost vertex v2, either one goes to a next vertex with the samerank, or one visits a 〈sf , j〉 vertex and then goes to a vertex with a rank lower by one. Thisexplains the only if diretion of (ii). Also note that v1 and v2 annot have the same evenranks beause in the middle of this proess, one has to go to a vertex with an odd rank topass c(f, g). So the only if diretion in (i) holds too. For the if diretions of (i) and (ii),suppose one wants to go from a leftmost vertex v1 with rank r to a rightmost vertex v2 withrank r′ and that either r > r′ or r = r′ ∈ [2m]odd. Let t be an odd rank suh that r ≥ t ≥ r′.Then by the onstrution, one an go from v1 to some vertex with rank t in the left part,pass through c(f, g) with rank t, and then ontinue to go to v2 in the right part. Note thatin the proess, if rank ever dereases, then an 〈sf , j〉 vertex must have been visited. So theif diretions of (i) and (ii) hold as well. Condition (iii) is obviously true.

f(s)

−

3

2

3

1

s

sf

s0

s1

s2

s3

g(s)

−

2

1

3

0

s

sf

s0

s1

s2

s3

d(f, 3, 2) d(f, 2, 1) c(f, g) d(g, 3, 2) d(g, 2, 1) d(g, 1, 0)

Figure 3: ∆-graph of wf,gFor later purposes, we expliitly present our onstrution for wf,g. For a Q(m)-ranking
h, we de�ne the state sets Rankh(r) = {q ∈ S′

n | r = h(q)} for r ∈ [2m] and Oddh to be theunion of Rankh(r)'s with r ∈ [2m]odd. Also for eah T ⊆ S′
n, de�ne letters in Σn as Id(T ) =

{〈q, q〉 | q ∈ T}, TtoF (T ) = Id(S′
n)∪{〈q, sf 〉 | q ∈ T}, FtoT (T ) = Id(S′

n)∪{〈sf , q〉 | q ∈ T}and c(f, g) = {〈p, q〉 | f(p) = g(q) ∈ [2m]odd, p, q ∈ S′
n}. For a Q(m)-ranking h and

r, r′ ∈ [2m], we write d(h, r, r′) to denote the word TtoF (Rankh(r)) · FtoT (Rankh(r′)).Then if r1, r2 . . . , rk are the ranks in [2m] that are images of h in desending order, we let
uh = d(h, r1, r2) ·d(h, r2, r3) · · · · ·d(h, rk−1, rk). Finally, wf,g is de�ned to be uf ·c(f, g) ·ug .



10 Q. YANLemma 4.4. Let f0, f1, . . . , fl be a list of Q(m)-rankings with l > 0, and let w be the word
wf0,f1wf1,f2 . . . wfl−1fl

. Also let p, q ∈ S′
n, then:(i) If f0(p) > fl(q) or f0(p) = fl(q) ∈ [2m]odd, then p

w
−→ q.(ii) If f0(p) > fl(q), then p

w
−→
Fn

q.Proof. If l = 1, then w = wf0,f1 , and the properties follow from Theorem 4.3 trivially. Sowe assume that l > 1. Let t be an odd rank suh that f0(p) ≥ t ≥ fl(q). By de�nitionof Q(m)-ranking, there exists a state sequene q1, q2, . . . , ql−1 suh that fi(qi) = t for all
1 ≤ i ≤ l − 1 . So qi

wfi,fi+1
−→ qi+1 for all 1 ≤ i < l − 1. Also beause f0(p) ≥ t ≥ fl(q), wehave p

wf0,f1−→ q1 and ql−1

wfl−1,fl
−→ q. Conatenate these together, we have p

w
−→ q, and (i) issatis�ed. If f0(p) > fl(q), then either f0(p) > t or t > fl(q), and hene either p

wf0,f1−→
Fn

q1 or
ql−1

wfl−1,fl
−→
Fn

q. So p
w

−→
Fn

q, and (ii) is satis�ed.Let L(n,m) be the number of di�erent Q(m)-rankings and let L(n) be max
1≤m<n

L(n,m).From now on we �x m suh that L(n) = L(n,m) and may simply write L for L(n). Clearlythere exists an in�nite looping enumeration f0, f1, . . . of Q(m)-rankings suh that fi 6= fjfor all i 6= j, 0 ≤ i, j < L, and fi = fjL+i for all i, j ≥ 0. Our �di�ult� ω-word αn is thenthe ω-word w0w1 . . . where wi = wfi,fi+1
for all i ≥ 0.Lemma 4.5. The ω-word αn is not in L(FBn).Proof. If there is a suessful run ρ of FBn over αn, then there is an in�nite state sequene

q0q1 · · · ∈ Sω
n suh that qi

wi−→ qi+1 for all i ≥ 0 and qi
wi−→
Fn

qi+1 for in�nitely many i ∈ N. Soby the onstrution of wi = wfi,fi+1
, fi(qi) ≥ fi+1(qi+1) for all i ≥ 0 and fi(qi) > fi+1(qi+1)for in�nitely many i ∈ N. This is impossible sine f0(q0) is �nite.Reall that Kupferman and Vardi's onstrution uses distint state sets to handle di�er-ent TL(m)-rankings. It turns out that if a omplement automaton of FBn does not have asmany states as Q(m)-rankings, it would be �onfused� by αn together with another omplex

ω-word α′ derived from αn.Lemma 4.6. For eah n > 1 and eah ω-automaton CA with less than L states, if ρ is arun of CA over αn /∈ L(FBn), then there is a run ρ′ of CA over some ω-word α′ ∈ L(FBn)with Occ(ρ′) = Occ(ρ) and Inf(ρ′) = Inf(ρ).Proof. Suppose that CA = (Σn, Ŝ, Î , ∆̂, Acc) is an ω-automaton with less than L states and
ρ = ρ(0)ρ(1) · · · ∈ Ŝω is a run of CA over αn. Let k0, k1, . . . be a number sequene suhthat k0 = 0, ki+1 − ki = length(wi) for all i ≥ 0. So the ki's mark the positions where the
wi's onatenate. Therefore ρ(ki)

wi−→ ρ(ki+1) for all i ≥ 0. De�ne for eah 0 ≤ i < L thenonempty set:
Q̂i = {q̂ ∈ Ŝ | ρ(kjL+i) = q̂ for in�nitely many j ∈ N}.Sine CA has less than L states, there exists some state q̂ in Q̂i ∩ Q̂j for some i 6= j, 0 ≤

i, j < L. In partiular one has, by de�nition, fi 6= fj. W.l.o.g. there is a q ∈ S′
n with

fi(q) > fj(q). By de�nitions of Q̂i and Occ(ρ), there is a t1 ∈ N su�iently large suh that
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ρ(kt1L+i) = q̂, every state in Occ(ρ) ours in ρ[0, kt1L+i], and that ρ(t′) ∈ Inf(ρ) for all
t′ > kt1L+i. By de�nitions of Inf(ρ) and Q̂j , there is a su�iently large t2 > t1 suh that
ρ(kt2L+j) = q̂ and every state in Inf(ρ) ours in ρ[kt1L+i, kt2L+j]. Let u = w0 . . . wt1L+i−1and v = wt1L+i . . . wt2L+j−1. Finally let α′ be uvω.Let qI ∈ S′

n be suh that f0(qI) = 2m− 1 ≥ fi(q) = ft1L+i(q). By Lemma 4.4, qI
u

−→ q.Similarly, sine ft1L+i(q) = fi(q) > fj(q) = ft2L+j(q), by Lemma 4.4 we have q
v

−→
Fn

q.Together we have qI
u

−→ q
v

−→
Fn

q
v

−→
Fn

q . . . and α′ is aepted by FBn.Finally, note that ρ′ = ρ[0, kt1L+i] · (ρ[kt1L+i + 1, kt2L+j])
ω is a run over α′, and we haveguaranteed that Occ(ρ′) = Occ(ρ) and Inf(ρ′) = Inf(ρ) as required.Theorem 4.7. For every n > 1, L(n) ≤ CNBW(FBn) ≤ CNBW(n), where L(n) = Θ((0.76n)n).Proof. By Lemma 4.6, every NBW that omplements FBn must have at least L(n) states,otherwise both αn and α′

n would be aepted by FBn, leading to ontradition. By a numer-ial analysis of L(n) very similar to the one in [FKV06℄, we have that L(n) = Θ((0.76n)n).For ompleteness, we present the detail of the analysis in appendix.4.3. Alphabet. Following the proof of Theorem 4.7, one onstruts full NBWs witnessingthe lower bound over a very large alphabet, whih we rarely onsider in pratie. In thissubsetion, we show that by using alphabet substitutions like in the proof of Theorem 3.1,the NBWs witnessing the lower bound an be also over a �xed alphabet.We say two words u and v from Σ∗
n are equivalent with respet to FBn, or simply u ≈ v,if for all p, q ∈ S′

n: (i) p
u

−→ q i� p
v

−→ q, and, (ii) p
u

−→
Fn

q i� p
v

−→
Fn

q. Then if one replaeseah letter involved in the lower bound proof by an equivalent word over some alphabet Γ,one shows that FBn ↾ Γ also witnesses the same L(n) lower bound.Lemma 4.8. There is an alphabet Γ of size 7 suh that for eah pair 〈f, g〉 of Q(m)-rankingsfor FBn, there is a word in Γ∗ equivalent to wf,g.Proof. Let Γ be the alphabet ontaining the following 7 letters:
• rotate = {〈si+1, si〉 | 0 ≤ i < n − 2} ∪ {〈s0, sn−2〉, 〈sf , sf 〉},
• clear0 = Id(Sn\{s0}),
• swap01 = (Id(S′

n) ∪ {〈s0, s1〉, 〈s1, s0〉})\{〈s0, s0〉, 〈s1, s1〉},
• copy01 = Id(S′

n) ∪ {〈s1, s0〉},
• 0toF = Id(Sn) ∪ {〈s0, sf 〉},
• Fto0 = Id(Sn) ∪ {〈sf , s0〉},
• clearF = Id(S′

n).Only three types of letters are relevant in the proof of Theorem 4.7: TtoF (T ), FtoT (T ) and
c(f, g). For eah T ⊆ S′

n, one an verify that:
• TtoF (T ) ≈ clearF ·

∏

si∈T

(rotatei · 0toF · rotaten−1−i).
• FtoT (T ) ≈

∏

si∈T

(rotatei · Fto0 · rotaten−1−i) · clearF .



12 Q. YANAs to c(f, g), the task is a bit more ompliated, and let us view it in a di�erent way. For aword w, de�ne set rj = {i|si
w

−→ sj, 0 ≤ i < n− 1} for every 0 ≤ j < n− 1. Clearly for twowords u and v, the following are equivalent:
• p

u
−→ q i� p

v
−→ q for all p, q ∈ S′

n.
• rj(u) = rj(v) for all 0 ≤ j < n − 1.So it is su�ient to �nd for eah c(f, g) a word w over {rotate, clear0, swap01, copy01} suhthat rj(w) = rj(c(f, g)) for all 0 ≤ j < n − 1.Appending eah letter a to the end of a word w hanges the ontent of the ri(w)'s.Consider these three types of words in Γ∗:(1) swapi,j =























rotatei · swap01 · rotaten−1−i if i + 1 = j
(swapi,i+1 · swapi+1,i+2 · · · · · swapj−1,j)

·(swapj−2,j−1 · swapj−3,j−2 · · · · · swapi,i+1)
if i + 1 < j

swapj,i if i > jthe empty word if i = j

.(2) copyi,j =

{

swap01 · copy01 · swap01 if i = 1 and j = 0
swap0,i · swap1,j · copy01 · swap1,j · swap0,i otherwise .(3) cleari = swap0,i · clear0 · swap0,iOne an verify that appending a swapi,j to w exhanges the ontent of ri(w) and rj(w),appending a copyi,j sets ri(w) to be ri(w) ∪ rj(w), and appending a cleari empties ri(w).Obviously these three operations allow one to reah arbitrary (ri(w))0≤i<n−1 on�gurations,inluding (ri(c(f, g)))0≤i<n−1, as needed.So Bn = FBn ↾ Γ, the restrition of FBn to the alphabet Γ, satis�es that CNBW(Bn) ≥

L(n), and we have:Theorem 4.9. For eah n > 1, there exists an NBW Bn with n states over a seven lettersalphabet suh that L(n) ≤ CNBW(Bn).4.4. Other Transformations. Surprisingly, our lower bound on Bühi omplementationextends to almost every omplementation or determinization transformation of nondeter-ministi ω-automata, via a redution making use of Lemma 4.6.Theorem 4.10. For eah n > 1 and eah ommon type T1 of nondeterministi ω-automata,there exists a T1 automaton An with n states over a �xed alphabet suh that:(i): For eah ommon type T2, every T2 automaton that omplements L(An) has atleast L(n) states.(ii): For eah ommon type T2 that is not Bühi nor generalized Bühi5, every deter-ministi T2 automaton that aepts L(An) has at least L(n) states.Proof. For eah ommon type T1, by Fat 2.1, there is a T1 automaton An equivalent to
NBW FBn with also n states [Löd99℄. (i) Suppose that an automaton CA of a ommontype aepts LC(An)= LC(FBn). Sine aeptane of ω-automata of a ommon type onlydepends on the Inf set of a run, the laim an be obtained by applying Lemma 4.6. (ii)If some deterministi T2 automaton with less than L(n) states aepts L(An), and T2 isnot Bühi or generalized Bühi, then by Fat 2.1 there is a deterministi ω-automaton of5Deterministi Bühi or generalized Bühi automata are stritly weaker in expressive power than theother ommon types of ω-automata.



LOWER BOUNDS FOR COMPLEMENTATION OF ω -AUTOMATA VIA THE FULL AUTOMATA TECHNIQUE ∗13a ommon type (not neessarily T2) omplementing L(An) with also less than L(n) states[Löd99℄, ontrary to (i). Finally, the alphabet of An an be �xed like in the proof of Theorem4.9. For the transformations involved in this theorem, less than half already had nontriviallower bounds like n! by Mihel's proof or the bunh of proofs by Löding [Löd99℄, whilethe others only have trivial or weak 2Ω(n) lower bounds. These bounds are summarized inSetion 6. 5. Complementation of Generalized Bühi AutomataWe turn now to NGBW omplementation. For NGBWs, state omplexity is prefer-ably measured in terms of both the number of states n and index k, where index measuresthe size of the aeptane ondition. By applying full automata, doing a hard ase anal-ysis for the onstrution in [KV05b℄ based on GC-ranking, and using a generalization ofMihel's tehnique, we prove an (Ω(nk))n lower bound, mathing with the (O(nk))n boundin [KV05b℄. This lower bound also extends to the omplementation of Streett automata andthe determinization of generalized Bühi automata into Rabin automata.5.1. Standard Full Generalized Bühi Automata FBn,k. We �rst de�ne the full NGBWautomata whih we will show to witness our desired lower bound.We say a generalized Bühi aeptane ondition Acc = {F1, F2, . . . , Fk} is minimal, ifno Fi, Fj pair with i 6= j satis�es that Fi ⊆ Fj . Note that if suh a pair exists, Fj anbe removed from Acc without altering the ω-language de�ned. So we will only onsiderminimal aeptane onditions. By the Sperner's theorem in ombinatoris [Lub66℄, if Accis minimal, then k ≤
( n
⌊n/2⌋

).De�nition 5.1. For n > 1 and 1 < k ≤
(

n−1
⌊(n−1)/2⌋

), the standard full NGBW FBn,k =

(Σn, Sn, In,∆n, Accn,k) is an NGBW with |Sn| = n, In = Sn and a minimal aeptaneondition Accn,k. Let snf be one of its state. We denote Sn\{snf} as S′
n. Accn,k is de�nedas an arbitrary �xed set {F1, F2, . . . , Fk} ⊆ P(S′

n) suh that: (i) |Fi| = ⌊(n− 1)/2⌋ for eah
Fi ∈ Accn,k. (ii) For eah q ∈ S′

n, the number of Fi's in Accn,k that do not ontain q is atleast ⌊k/2⌋.We must show that there is really suh a minimal Accn,k satisfying (i) and (ii). Firstlet Accn,k be a olletion of arbitrary k distint subsets of S′
n of ⌊(n − 1)/2⌋ states andthus (i) is satis�ed. De�ne χq for eah q ∈ S′

n as the number of Fi's in Accn,k that ontain
q. By double ounting, ∑

q∈S′
n

χq =
k
∑

i=1
|Fi|. So if |χp − χq| ≤ 1 for all p, q ∈ S′

n, then forall q ∈ S′
n, χq ≤ ⌈k⌊(n−1)/2⌋

n−1 ⌉ ≤ ⌈k/2⌉ and (ii) is also satis�ed. Suppose χp − χq > 1 forsome p, q ∈ S′
n. A little thought shows that there is an Fi ∈ Accn,k suh that p ∈ Fi and

(Fi\{p}) ∪ {q} /∈ Accn,k. Replae Fi in Accn,k by (Fi\{p}) ∪ {q} and we make |χp − χq|stritly smaller. Repeat this till |χp − χq| ≤ 1 for all p, q ∈ S′
n. Then ondition (ii) is alsosatis�ed.



14 Q. YAN5.2. A Generalization of Mihel's Tehnique. We generalize the tehnique used inMihel's proof for Bühi omplementation [Mi88℄ so that a tighter analysis of NGBWomplementation beomes possible.De�nition 5.2. A generalized o-Bühi segment (GC-segment for short) w of an NGBW
B is a word suh that wω /∈ L(B). Two GC-segments w1, w2 of B on�it if all ω-words inthe form wk0

1 (wk1
1 wk2

2 )ω, ki > 0 are in L(B). A set W of GC-segments of B is a on�it setfor B if every two distint GC-segments in W on�it.Lemma 5.3. If W is a on�it set for NGBW B, then CNGBW(B) ≥ |W |.Proof. Suppose that some NGBW CB = (Σ, Ŝ, Î, ∆̂, F̂ ) omplements B, then for eah GC-segment w of B in W , CB aepts wω. For every two distint GC-segments w1, w2 ∈ W ,let l1 = length(w1), l2 = length(w2), and let ρ(0)ρ(1) . . . and ρ′(0)ρ′(1) . . . be CB's twosuessful runs over wω
1 and wω

2 respetively. De�ne
Q̂1 = {q̂ ∈ Ŝ | ρ(i · l1) = q̂ for in�nitely many i ∈ N}and
Q̂2 = {q̂ ∈ Ŝ | ρ′(i · l2) = q̂ for in�nitely many i ∈ N}.Clearly Q̂1 and Q̂2 are nonempty. It su�es to show that Q̂1 ∩ Q̂2 = ∅, sine it implies thatthe number of states of CB is no less than the number of GC-segments in W .Suppose by ontradition that some q̂ is in Q̂1 ∩ Q̂2. By de�nition of Q̂1, there is asu�iently large k0 > 0 suh that ρ(k0l1) = q̂ and for eah i ≥ k0l1, ρ(i) ∈ Inf(ρ). So

ρ[0, k0l1] is a �nite run over wk0
1 from some initial state q̂I of CB to q̂, i.e., q̂I

w
k0
1−→ q̂. Byde�nitions of Q̂1 and Inf(ρ), there is a su�iently large k1 > 0 suh that ρ((k0 + k1)l1) = q̂and in addition ρ[k · l1, (k0 + k1)l1] is a �nite run from q̂ to q̂ over wk1

1 whih visits everystate in Inf(ρ). Similarly we have that for some k′
0 and k2 > 0, ρ′[k′

0l2, (k
′
0 + k2)l2] is a�nite run from q̂ to q̂ over wk2

2 whih visits exatly every state in Inf(ρ′). We onstrut anew run as follows:
ρnew = ρ[0, k0l1] ·

(

ρ[k0l1 + 1, (k0 + k1)l1] · ρ
′[k′

0l2 + 1, (k′
0 + k2)l2]

)ω
,whih is a run over α = wk0

1 (wk1
1 wk2

2 )ω with Inf(ρnew) = Inf(ρ)∪ Inf(ρ′). As ρ and ρ′ areboth suessful, ρnew is also suessful by de�nition of generalized Bühi automata. So α isaepted by CB. However, as w1 and w2 on�it, α is aepted by B too, ontradition.Corollary 5.4. If W is a on�it set for NGBW B, then every NSW (nondeterministiStreett automaton) that omplements B has at least |W | states.Proof. Streett automata also satisfy that if ρ and ρ′ are both suessful runs, then everyrun ρnew satisfying Inf(ρnew) = Inf(ρ) ∪ Inf(ρ′) is also suessful. So the same proof asof Lemma 5.3 applies here.5.3. A Con�it Set for FBn,k. It remains to de�ne a large on�it set for FBn,k. Thefollowing onept of pseudo generalized o-Bühi level ranking is adapted from the onept ofgeneralized o-Bühi level ranking in the NGBW omplementation onstrution in [KV05b℄.De�nition 5.5. A pseudo generalized o-Bühi level ranking (PGCL-ranking for short) for
FBn,k is a pair 〈f, g〉 suh that f is a bijetion from S′

n to {1, . . . , n− 1} and g is a funtionfrom S′
n to {1, 2, . . . , k} suh that eah q ∈ S′

n is not ontained in Fg(q).



LOWER BOUNDS FOR COMPLEMENTATION OF ω -AUTOMATA VIA THE FULL AUTOMATA TECHNIQUE ∗15By de�nition of FBn,k, there are at least ⌊k/2⌋ hoies for the value of g(q) for eah
q ∈ S′

n. So there are at least (n− 1)!× (⌊k/2⌋)n−1 many di�erent PGCL-rankings, whih is
(Ω(nk))n by Stirling's formula.Let G be a set of state sets. In the following, we use notations in the form p

w
−→
G,!B

q todenote that there is a �nite run over w from p to q suh that the run visits every state set
F in G, but it does not visit B. Either G or B will be omitted if is empty. In the following,we set F = {F1, . . . , Fk}.Lemma 5.6. For eah PGCL-ranking 〈f, g〉, there exists a word segf,g with the propertiesthat for all p, q ∈ S′

n :(i): If p = q, i.e., f(p) = f(q), then there is a unique �nite run of FBn,k over segf,gfrom p to q, and it is in the form p
segf,g

−−−−−−−−−→
F\Fg(p),!Fg(p)

q.(ii): If f(p) > f(q), then there is a unique �nite run of FBn,k over segf,g from p to q,and it is in the form p
segf,g
−→
F

q.(iii): If f(p) < f(q), then there is no �nite run of FBn,k from p to q over segf,g.Proof. For notational onveniene, we use notation like [ ⊕p1→p2,
⊖p3→p4,⊖p5→p5

] to denote letter
{〈q, q〉 | q ∈ S′

n} ∪ {〈p1, p2〉}\{〈p3, p4〉, 〈p5, p5〉}. We also de�ne a hoie funtion c(i, p) foreah i ∈ {1, . . . , k} and state p ∈ S′
n with g(p) 6= i suh that c(i, p) equals to some arbitrary�xed element in Fi\Fg(p).For eah r ∈ {1, . . . , n − 1}, let p ∈ S′

n be suh that f(p) = r, and de�ne:
ur =

∏

i6=g(p),1≤i≤k
s=c(i,p)

[

⊕p → s, ⊖p → p,
⊕s → snf , ⊖s → s

] [

⊕s → p, ⊖p → p,
⊕snf → s, ⊖s → s

]

.(Reall that ΠU means the onatenation of all words in U in lexiographial order.) Thenfor eah q ∈ S′
n, there is a unique �nite run over ur from q to q, and it is in the form

q
ur−→

F\Fg(p),!Fg(p)

q if p = q, or q
ur

−→
!Fg(p)

q otherwise.For eah r = {2, 3, . . . , n− 1}, let p, q, s ∈ S′
n be suh that f(p) = r, f(q) = r − 1 and sbe an arbitrary state in Fg(p). De�ne:

vr =

[

⊕p → s , ⊖s → s ,
⊕s → snf

] [

⊕s → q , ⊖s → s ,
⊕snf → s

]

.Then there is a unique �nite run over vr from p to q, and it is in the form p
vr−→

Fg(p)

q. Alsofor every q′ ∈ S′
n, there is a unique �nite run over vr from q′ to q′, and it is in the form

q′
vr−→

!Fg(p)

q′.Finally let segf,g be un−1vn−1un−2vn−2 . . . v2u1.To see that segf,g satis�es the required properties, �rst note that for all p ∈ S′
n, p

ur−→
!Fg(p)

pand p
vr−→

!Fg(p)

p. For property (i), for every p ∈ S′
n with f(p) = r, there exists a unique �niterun over segf,g, and it is in the form:

p
un−1vn−1...ur+1vr+1
−−−−−−−−−−−−−→

!Fg(p)

p
ur−−−−−−−−−→

F\Fg(p),!Fg(p)

p
vrur−1...v2u1
−−−−−−−−→

!Fg(p)

p,



16 Q. YANthat is, p
segf,g

−−−−−−−−−→
F\Fg(p),!Fg(p)

p as required. For property (ii), for every p, q ∈ S′
n with f(p) = r1 >

r2 = f(q), let sr ∈ S′
n be suh that f(sr) = r for eah r1 > r > r2. There is a unique �niterun over segf,g, and it is in the form:

p
un−1vn−1...ur1+1vr1+1
−−−−−−−−−−−−−−→ p

ur1−−−−−−−−−→
F\Fg(p),!Fg(p)

p
vr1−−−→

Fg(p)

sr1−1

ur1−1vr1−1
−−−−−−−→ sr1−2 . . . sr2+1

ur2+1vr2+1
−−−−−−−→ q

ur2 ...v2u1
−−−−−−→ q,that is, p

segf,g
−→
F

q as required. Property (iii) is easy to verify.Remark 5.7. From the proof of the above lemma, it follows that an alphabet of sizepolynomial in n is su�ient to desribe {segf,g|f, g are PGCL-rankings}.Lemma 5.8. For eah PGCL-ranking 〈f, g〉 for FBn,k, word segf,g is a GC-segment of
FBn,k.Proof. Let l = length(segf,g), and let ρ = ρ(0)ρ(1) . . . be a run of FBn,k over segω

f,g in theform ρ(0)
segf,g
−→ ρ(l)

segf,g
−→ ρ(2l) . . . . Note that by the onstrution of segf,g, ρ(i · l) ∈ S′

n and
f(ρ(i · l)) is de�ned for all i ≥ 0. Then by property (iii), f(ρ(0)) ≥ f(ρ(l)) ≥ f(ρ(2l)) ≥ . . .and then for some t ∈ N, f(ρ(t′ · l)) = f(ρ(t · l)) for all t′ > t, that is ρ(t′ · l) = ρ(t · l)for all t′ > t sine f is a bijetion. Let j = g(ρ(t · l)). By property (i), Fj is not visitedin ρ[t′ · l, (t′ + 1) · l] for all t′ ≥ t. So Inf(ρ) ∩ Fj = ∅ and hene segω

f,g is not aepted by
FBn,k.Lemma 5.9. The set W = {segf,g | 〈f, g〉 is a PGCL-ranking for FBn,k} is a on�it setof size (Ω(nk))n for FBn,k.Proof. Suppose 〈f1, g1〉 and 〈f2, g2〉 are two distint PGCL-rankings. Let w1 = segf1,g1 and
w2 = segf2,g2. There are two ases.Case: I: f1 and f2 are two di�erent bijetions. So there exist p, q ∈ S′

n suh that
f1(p) > f1(q) and f2(p) < f2(q). By property (i), p

w1−→ p, q
w2−→ q and so p

wm−1
1−→

p, q
wm−1

2−→ q for all m > 0. By property (ii), p
w1−→
F

q and q
w2−→
F

p. So for all m > 0,
p

wm
1−→
F

q and q
wm

2−→
F

p. Now for every ω-word α in the form wk0
1 (wk1

1 wk2
2 )ω, ki > 0, weonstrut a suessful run over α as p

w
k0
1−→ p

w
k1
1−→
F

q
w

k2
2−→
F

p
w

k1
1−→
F

q
w

k2
2−→
F

p . . . . So α isaepted by FBn,k and w1 on�its with w2.Case: II: f1 = f2 but g1 6= g2. Let p ∈ S′
n be suh that g1(p) 6= g2(p). By property (i),

p
w1−−−−−−−−−−→

F\Fg1(p),!Fg1(p)

p and p
w2−−−−−−−−−−→

F\Fg2(p),!Fg2(p)

p. As g1(p) 6= g2(p), p
w

k1
1 w

k2
2−−−−−→

F
p for every

k1, k2 > 0. Now for every ω-word α in the form wk0
1 (wk1

1 wk2
2 )ω, ki > 0, we onstruta suessful run over α as p

w
k0
1−→ p

w
k1
1 w

k2
2−−−−−→

F
p

w
k1
1 w

k2
2−−−−−→

F
p . . . . So α is aepted by

FBn,k and w1 on�its with w2.Finally, the size of W is just the number of di�erent PGCL-rankings for FBn,k, whih is
(Ω(nk))n.



LOWER BOUNDS FOR COMPLEMENTATION OF ω -AUTOMATA VIA THE FULL AUTOMATA TECHNIQUE ∗175.4. Results.Theorem 5.10. For n > 1 and 1 < k ≤
( n−1
⌊(n−1)/2⌋

), CNGBW(n, k) = (Ω(nk))n.Proof. The theorem follows from Lemma 5.3 and Lemma 5.9 diretly.This mathes neatly6 with the (O(nk))n onstrution in [KV05b℄, and thus settles thestate omplexity of NGBW omplementation. Like Mihel's result, this lower bound anbe extended to NSW omplementation and the determinization of NGBW into DRW (stateomplexity denoted by DNGBW→DRW(n, k)):Theorem 5.11. For all n > 1 and 1 < k ≤
(

n−1
⌊(n−1)/2⌋

), CNSW(n, k) = (Ω(nk))n and
DNGBW→DRW(n, k) = (Ω(nk))n.Proof. By Fat 2.1 there is an NSW Sn,k equivalent to eah FBn,k with the same number ofstates and the same index. By Corollary 5.4 and Lemma 5.9, every NSW that omplements
FBn,k has (Ω(nk))n states. So CNSW(Sn,k) = (Ω(nk))n and CNSW(n, k) = (Ω(nk))n.Suppose by ontradition that R is a DRW with less than |W | states that aepts
L(FBn,k), then by Fat 2.1 there is a DSW S omplementing FBn,k with the same numberof states as R, ontrary to Corollary 5.4. So DNGBW→DRW(n, k) = (Ω(nk))n.Remark 5.12. For the above lower bound, by Remark 5.7, the alphabet involved in theproof is of a size polynomial in n. It seems di�ult to �x a onstant alphabet, but weonjeture this to be possible if we aim at a weaker bound like 2Ω(n log nk).6. SummaryIn the following table, we brie�y summarize our lower bounds. Here �Any� meansany ommon type of nondeterministi ω-automata (and the two Any's an be di�erent).�o.� means omplementation and �det.� means determinization. �L.B.� /�U.B.� stands forlower/upper bound. Weak 2Ω(n) lower bounds are onsidered trivial.# Transformation Previous L.B. Our L.B. Known U.B.1 NBW

o.
−→ NBW Ω((0.36n)n) [Mi88℄ Ω((0.76n)n) O((0.97n)n) [FKV06℄2 Anyo. or det.−→ Any trivial or n! [Löd99℄ 2Ω(n log n) -3 NBW
det.
−→ DMW trivial7 2Ω(n log n) 2O(n log n) [Saf89℄4 NRW o.
−→ NRW trivial8 2Ω(n log n) 2O(nk log n) [KV05a℄5 NGBW
o.
−→ NGBW Ω((n/e)n) [Mi88℄ (Ω(nk))n (O(nk))n [KV05b℄6 NSW
o.
−→ NSW Ω((n/e)n) [Löd99℄ (Ω(nk))n 2O(nk log(nk)) [KV05a℄7 NGBW
det.
−→ DRW Ω((n/e)n) [Löd99℄ (Ω(nk))n 2O(nk log(nk)) [Saf89℄In partiular, lower bound #2 implies that the 2Ω(n log n) blow-up is inherent in theomplementation and determinization of nondeterministi ω-automata, orresponding tothe 2n blow-up of �nite automata. The speial ase #3 justi�es that Safra's onstrution isoptimal in state omplexity for the determinization of Bühi automata into Muller automata.6The gap hidden in the notation (Θ(nk))n an be at most c

n for some c, while the gap hidden in themore widely used notation 2Θ(n log nk) an be as large as (nk)n.



18 Q. YANWe single out this result beause this determinization onstrution is touhed in almost everyintrodutory material on ω-automata, and its optimality problem was expliitly left open in[Löd99℄.For many of these transformations, it is still interesting to try to narrow the omplexitygap, and here we disuss three of them. First, the omplexity gap of Bühi omplementation,although signi�antly narrowed, is still exponential. By analyzing the di�erene betweenthe lower and upper bounds, one an �nd that the gap is mainly aused by the use of thestate omponent O in [FKV06℄ to maintain the states along paths that have not visitedan odd vertex sine the last time O has been empty. So we should investigate how manystates are really neessary for suh a purpose. Seond, for Streett omplementation, the gapis still quite large. We feel that e�orts should be �rst taken to optimize the onstrutionin [KV05a℄. Third, it is interesting to see if an Ω(nn) or similar lower bound exists forthe determinization of NBWs into Muller or Rabin automata. Suh would imply thatdeterminization is harder than omplementation for ω-automata, unlike the ase of automataover �nite words. Of ourse, one an also work on the reverse diretion, trying to designranking based onstrutions for determinization, whih ould have good omplexity boundas well as better appliability to pratie.Finally, we remark that the full automata tehnique has been quite essential in obtainingour lower bound results. It is also possible to extend the full automata tehnique to otherkinds of automata, like alternating automata or tree automata. We hope that the fullautomata tehnique will stimulate the disovery of new results in automata theory.Aknowledgement. I thank Orna Kupferman and Moshe Vardi for the insightful disussionand the extremely valuable suggestions. I thank Enshao Shen for his kind support andguidane. I also thank the anonymous referees for the detailed and useful omments.Referenes[Bir93℄ J.C. Birget. Partial orders on words, minimal elements of regular languages and state omplexity(has online erratum). Theoretial Computer Siene, 119(2):267�291, 1993.[Bü62℄ J. R. Bühi. On a deision method in restrited seond order arithmeti. In Proeedings of the In-ternational Congress on Logi, Method, and Philosophy of Siene, pages 1�12. Stanford UniversityPress, 1962.[FKV06℄ E. Friedgut, O. Kupferman, and M.Y. Vardi. Bühi omplementation made tighter. InternationalJournal of Foundations of Computer Siene, 17(4):851�868, 2006.[HK02℄ M. Holzer and M. Kutrib. State omplexity of basi operations on nondeterministi �nite automata.In Proeedings of 7th International Conferene on Implementation and Appliation of Automata,volume 2608 of Leture Notes in Computer Siene, pages 148�157, 2002.[Jir05℄ G. Jirásková. State omplexity of some operations on binary regular languages. Theoretial Com-puter Siene, 330(2):287�298, 2005.[Kla91℄ N. Klarlund. Progress measures for omplementation of omega-automata with appliations totemporal logi. In Proeedings of 32th IEEE Symposium on Foundations of Computer Siene,pages 358�367, 1991.[Kur94℄ R.P. Kurshan. Computer-Aided Veri�ation of Coordinating Proesses: The Automata-TheoretiApproah. Prineton Univ. Press, 1994.[KV01℄ O. Kupferman and M.Y. Vardi. Weak alternating automata are not that weak. ACM Transationson Computational Logi, 2(3):408�429, 2001.[KV05a℄ O. Kupferman and M.Y. Vardi. Complementation onstrutions for nondeterministi automata onin�nite words. In Proeedings of 11th International Conferene on Tools and Algorithms for theConstrution and Analysis of Systems, volume 3440 of Leture Notes in Computer Siene, pages206�221, 2005.
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f(n) ≈ g(n) if two funtions di�er by only a polynomial fator in n. For example, byStirling's formula, n! ≈ (n/e)n.Let T (n,m) denote the number of funtions from {1 . . . n} onto {1 . . . m}. The followingestimate of T (n,m) is impliit in Temme [Tem93℄:Lemma A.1. [Tem93℄For 0 < β < 1, let x be the positive real number solving βx = 1−e−x,and let a = − ln x+β ln(ex−1)−(1−β)+(1−β) ln(1/β−1). Then T (n, ⌊βn⌋) ≈ (M [β]n)n,where M [β] = ea−β

(

β
1−β

)1−β.To prove a lower bound for L(n), we �rst express L(n,m) in the following form:Lemma A.2. L(n,m) =
∑n−1

t=m

(n−1
t

)

T (t,m)mn−1−t .Proof. To ount the number of di�erent Q(m)-ranking, we �x t, whih denotes the numberof states that have odd ranks. Then there are (n−1
t

) ways to hoose whih t states haveodd ranks, and there are T (t,m) ways to assign these t states the m di�erent odd ranks.



20 Q. YANMoreover, for eah of the other n − 1 − t states in S′
n, there are m ways to hoose whiheven rank it is assigned.Theorem A.3. L(n) = Ω((cln)n), where cl = 0.76.Proof. By the previous lemma, L(n) = max

m=1...n−1

∑n−1
t=m

(

n−1
t

)

T (t,m)mn−1−t. Sine we donot are about polynomial fators, ∑n−1
t=m an be replaed by max

t=m...n−1
, and we an replae

m! by (m/e)m and (n−1
t

) by nn

tt(n−t)n−t as well. Also let γ = m/n and β = t/n, then wehave:
L(n) ≈ max

0<γ≤β<1
nn(βn)−βn((1 − β)n)−(1−β)n · (M [γ/β]βn)βn · (γn)n−1−βn

≈ max
0<γ≤β<1

(h(β, γ)n)n, where h (β, γ) = (1 − β)β−1(M [γ/β])βγ1−β .Computed by the Mathematia software, h(β, γ) = 0.7645 when β = 0.7236, γ = 0.5744.So (0.76n)n is an asymptoti lower bound for L(n).
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