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Most results in revenue-maximizing auction design hinge on “getting the price right” — offering goods to
bidders at a price low enough to encourage a sale, but high enough to garner non-trivial revenue. Getting the
price right can be hard work, especially when the seller has little or no a priori information about bidders’
valuations.

A simple alternative approach is to “let the market do the work”, and have prices emerge from competition
for scarce goods. The simplest-imaginable implementation of this idea is the following: first, if necessary,
impose an artificial limit on the number of goods that can be sold; second, run the welfare-maximizing VCG
mechanism subject to this limit.

We prove that such “supply-limiting mechanisms” achieve near-optimal expected revenue in a range of
single- and multi-parameter Bayesian settings. Indeed, despite their simplicity, we prove that they essen-
tially match the state-of-the-art in prior-independent mechanism design.

Categories and Subject Descriptors: F.0 [Theory of Computation]: General

General Terms: Algorithms, Economics, Theory
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1. INTRODUCTION
1.1. A Matching Problem
Consider the problem of matching agents with unknown preferences to a set of goods
for sale, with the goal of maximizing the seller’s revenue. For example, a travel website
selling hotel accommodation would like to match agents to a set of hotel rooms. Each
unit-demand agent only needs one room, and has a different private value for each
type of room. Uncertainty about agents’ values is modeled by drawing the values from
prior distributions, with one distribution per good (one distribution for a suite at the
Ritz, another for a room at Best Western, and so on). The seller wishes to maximize
her expected revenue, but at the same time wants to minimize the resources spent
estimating the underlying distributions, as well as the risks associated with getting
these distributions wrong and the complexity of the procedures involved in carrying
out the sale. In addition, a far-seeing seller might also want to (approximately) maxi-
mize social welfare.

Maximizing expected revenue in the matching problem above is difficult even when
the value distributions are known. The difficulty stems from the problem’s multi-
parameter nature. The theory of optimal auction design stops short of solving settings
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in which the description of an agent’s preferences requires multiple parameters. Re-
cent breakthrough work of Chawla et al. [2010a] circumvents this limitation by intro-
ducing approximately optimal mechanisms. These mechanisms make use of a priori
knowledge of the value distributions.

Our work focuses on prior-independent mechanisms, whose description does not ref-
erence any prior distributions, yet for every set of prior distributions satisfying stan-
dard assumptions, has expected revenue close to that of the optimal mechanism tai-
lored to the distributions. We present prior-independent mechanisms that have near-
optimal expected revenue for a variety of market environments, including the multi-
parameter matching problem described above. The importance of prior-independence
is discussed by Dhangwatnotai et al. [2010].

Our mechanisms are extremely simple, and are based on the natural idea of artifi-
cially limiting the supply to increase bidder competition for the goods. Previous prior-
independent mechanisms are based largely on some form of random sampling to es-
timate the prior distributions [Balcan et al. 2005; Dhangwatnotai et al. 2010]. Ours
are the first known prior-independent mechanisms for nontrivial multi-parameter set-
tings.1

1.2. A Supply-Limiting Mechanism
Before describing our results in more detail, we motivate the approach of limiting sup-
ply and develop some intuition for how it works by considering a very simple, single-
parameter context — multi-unit auctions. In this context the seller only has a single
item, but may have several identical units of it, and the agents are unit-demand. A con-
crete example is the sale of digital goods such as software licenses. In this particular
case, the supply is essentially unlimited.

Now consider the supply-limiting mechanism in Algorithm 1. This mechanism is
simple and natural, and does not rely on knowing or sampling distributions. Intu-
itively, limiting the supply increases competition, and indeed it is not hard to show
that this mechanism guarantees approximately-optimal revenue, assuming that bid-
der valuations are i.i.d. draws from a distribution satisfying a standard regularity
assumption. In particular, although the mechanism is oblivious to the underlying dis-
tribution, in expectation it achieves at least half of the expected revenue of the optimal
mechanism tailored to the distribution. We remark that by using the VCG mecha-
nism,2 our mechanism also guarantees near-optimal social welfare, even though our
weak distributional assumptions allow the revenue and welfare of other mechanism to
be very far from each other.

ALGORITHM 1: A Generic Prior-Independent Mechanism
(1) Set a supply limit equal to half of the number of bidders.
(2) Run the VCG mechanism subject to this supply limit.

This paper shows that under minimal regularity assumptions, the simple, prior-
independent mechanism above and its revenue guarantee generalize to significantly
more complex settings. In other words, we identify settings in which the prior-
independent VCG mechanism with limited supply is guaranteed to have near-optimal

1Simultaneously and independently, another group obtained similar results using different mechanisms;
see Section 1.5 for a detailed discussion.
2We assume for now that the reader is familiar with the VCG mechanism, see the Preliminaries section for
details.



expected revenue. For the matching problem discussed above, we prove the following
theorem.

THEOREM 1.1 (PRIOR-INDEPENDENT MECHANISM FOR MATCHING (INFORMAL)).
For every matching environment with n ≥ 2 bidders, the expected revenue of the mecha-
nism in Algorithm 1 is at least a constant fraction of the optimal expected revenue.

The constant fractions we achieve are quite good in many cases, e.g., we achieve a
fraction of 1

4 when the number of bidders exceeds the number of goods.

1.3. Technical Approach: Reduction to Bulow-Klemperer-Type Theorems
Our technical approach to establishing approximation properties of supply-limiting
mechanisms is based on a general reduction to “Bulow-Klemperer-type” theorems. To
convey the basic idea, we once again illustrate our approach using the simple example
of a multi-unit auction for digital goods.

A slightly generalized version of Bulow and Klemperer’s well-known result [1996]
states that when selling k units of an item to n unit-demand bidders, whose single-
parameter values are drawn i.i.d. from a regular distribution, the expected revenue of
the VCG mechanism with k additional bidders is at least that of the optimal mecha-
nism without additional bidders (see [Kirkegaard 2006] for a simple proof). We briefly
sketch how to use this Bulow-Klemperer theorem to analyze the mechanism in Algo-
rithm 1 in the multi-unit auction context.

Consider first the “halved environment”, with half of the n original bidders and a
corresponding supply limit of n/2. One can show that if we were to restrict the optimal
mechanism to run on this sub-environment instead of the original one, its expected
revenue is at least half of that of the optimal auction for the original environment.
Now we conceptually add back the removed bidders but without changing the supply,
and run VCG. It follows from the Bulow-Klemperer theorem that the expected revenue
is at least as high as the optimal expected revenue for the halved environment. There-
fore the supply-halving mechanism guarantees at least half of the optimal expected
revenue on the original environment. In fact, one can achieve other trade-offs between
revenue and welfare by setting suitable supply limits.

In general, a Bulow-Klemperer-type theorem states that instead of running the op-
timal mechanism on the original environment, we can get approximately as much rev-
enue in expectation by running the VCG mechanism on a suitably augmented envi-
ronment with additional bidders or supply. We make explicit the connection between
Bulow-Klemperer-type theorems and prior-independent mechanisms. A sketch of our
reduction procedure, which applies to both single- and multi-parameter settings, ap-
pears in Reduction 2.

REDUCTION 2: From Prior-Independent Auctions to Bulow-Klemperer-Type Theorems
(1) Restriction: Restrict the auction environment by dropping bidders and/or limiting supply.

Guarantee: Optimal expected revenue approximately maintained.
Proof: By a general subadditivity property of optimal expected revenue in the bidder set.

(2) Augmentation: Augment the restricted environment by adding bidders while maintaining
the supply limit.
Guarantee: Expected revenue of VCG approximates optimal expected revenue.
Proof: By a suitable Bulow-Klemperer-type theorem.

To instantiate the reduction in various single-parameter environments, we can
use generalizations of the original Bulow-Klemperer result to matroid environments



[Dughmi et al. 2009] and to non-i.i.d. bidders [Hartline and Roughgarden 2009]. For
the matching problem, we need to prove the first generalization of the original Bulow-
Klemperer theorem to a nontrivial multi-parameter setting.

THEOREM 1.2 (B-K-TYPE THEOREM FOR MATCHING (INFORMAL)). For every
matching environment with n bidders and m goods, the expected revenue of the VCG
mechanism with either (1) m additional bidders or (2) O(n) additional bidders and
a supply limit n, is at least a constant fraction of the optimal expected revenue in the
original environment.

Our proof is based on the following ideas (see Section 5 for details). We first observe
there is a very simple upper bound on the optimal expected revenue for the matching
environment — the expected revenue from selling each good separately to n+1 bidders.
We need to show that VCG with additional bidders does just as well. Recall that in
VCG, the winner of a certain good pays for the “damages” incurred by the losers, and
in both cases stated in the above theorem it is guaranteed there are O(n) many losers.
The technical challenge is a dependency issue — by definition the losers seem likely
to have lower values for the good than those of the n + 1 bidders to which it is sold
separately, so that their damages may not be enough to cover the expected revenue.
We show this is not the case due to the structure of matchings, specifically the fact
that the values of bidders for one particular good play a limited role in VCG’s choice
of winners, so limited in fact that the only implication on the losers’ values is being
lower than that of the winner. We formalize these ideas by introducing an auxiliary
selling procedure, conceptually and revenue-wise half-way between selling the good
separately and selling it as part of VCG, namely we run VCG but defer the sale of
the good until exactly n + 1 bidders remain, so that by construction their values are
unaffected by dependency issues.

1.4. Our Results and Organization
Our main result is a collection of approximately-optimal supply-limiting mechanisms
for different auction environments with i.i.d. regular bidders, as detailed in Table I. For
single-parameter settings, we show supply-limiting mechanisms for k-unit and ma-
troid environments. For multi-parameter settings, we show three versions of a supply-
limiting mechanism for matching environments, each with a different approximation
guarantee. The choice among these versions should be according to the parameters of
the environment at hand. Our results generalize to multi-unit matching environments
as well.

1.5. Related Work
Most related to our results are the following. Dughmi et al. investigate conditions
under which VCG inadvertently yields near-optimal revenue. They use a generalized
Bulow-Klemperer result to show this is guaranteed in matroid environments with suf-
ficient competition in the form of disjoint bases [Dughmi et al. 2009]. Our reduction
encompasses and generalizes this result. Hartline and Roughgarden also study con-
ditions for when simple Vickrey-based mechanisms achieve near-optimal revenue and
in particular they derive an anonymous-reserve mechanism from one of their Bulow-
Klemperer-type results [Hartline and Roughgarden 2009, Theorem 5.1]. This mecha-
nism however is not prior-independent and is inherently limited to single items [Hart-
line and Roughgarden 2009, Example 5.4]. Chawla et al. use posted-price mechanisms
that rely on prior distributions — i.e., mechanisms that are not prior-independent —
to achieve a 6.75-approximation for the matching setting with multiple units and non-
i.i.d. bidders, and also a 32

3 -approximation for a more general environment than what
we consider, namely a graphical matroid with unit-demands [Chawla et al. 2010a].



Table I: Summary of Our Results

Environ-
menta

Value
Parameters

Definition
Section

Main
Result

Approxi-
mation
Factor

Mechanismb Proof
Section

k-unit Single Sect. 2.1 Theorem 3.1 min{2, n
n−k

} VCG≤n/2 Sect. 3
Matroidc

κ ≥ 2
Single Sect. 6.1.1 Theorem 6.1 2 VCG Full version

Matroidc

κ = 1
Single Sect. 6.1.1 Theorem 6.1 4 VCG≤⌊r/2⌋ Full version

Matchingd
m ≤ n/2

Multiple Sect. 2.1 Theorem 4.1 2 VCG Sect. 4.3
Sect. 5 (B-K)

Matchingd
m ≥ n/2

Multiple Sect. 2.1 Theorem 4.2 4m
n

VCG≤n/2 Sect. 4.3
Sect. 5 (B-K)

Matching
general m

Multiple Sect. 2.1 Theorem 4.3 27 VCG≤n/3 Sect. 4.3
Full version (B-K)

Matching
kj -unit
general m

Multiple Sect. 6.2 Theorem 6.5 27 VCG≤n/3,≤⌈kj/2⌉ Full version

aBidders in all environments are assumed to be i.i.d. and regular.
bVCG≤ℓ is the VCG mechanism with supply limit ℓ (and VCG≤ℓ,≤ℓj is the VCG mechanism with global supply limit
ℓ and local supply limits {ℓj}, defined in Section 6.2).
cMatroid has rank r and packing number κ.
dResult holds for multi-unit matchings as well (defined in Section 6.2).

In terms of techniques, our limited-supply mechanisms are special cases of maximal-
in-range-mechanisms (see, e.g., [Nisan and Ronen 2000]), which can be implemented
in dominant strategies. We apply a reduction of Chawla et al. that relates single- and
multi-parameter settings ([Chawla et al. 2010a], see Preliminaries). Some of our tech-
niques are inspired by Chawla et al.’s analysis of the VCG mechanism’s performance
in a job scheduling context [Chawla et al. 2011].

Finally, the paper of Devanur et al. [Devanur et al. 2011] is very closely related to
this work. These two independent papers considered essentially the same set of prob-
lems and gave similar results, though using different mechanisms. The mechanisms in
[Devanur et al. 2011] are arguably quite complicated, certainly more complex and less
natural than the supply-limiting mechanisms studied here. On the other hand, the
mechanisms in [Devanur et al. 2011] seem to be a bit easier to analyze than supply-
limiting mechanisms, and they also achieve better constant factors in the matching
problem for the case when m is large. The analyses in the two papers share some com-
mon preliminary steps, but at their core are quite different, reflecting the different
mechanisms studied. Finally, in the matching problems studied in the original version
of the present work, each item was assumed to have unit supply; we were inspired by
[Devanur et al. 2011] to pursue the more general multi-unit results presented here.

2. PRELIMINARIES
2.1. Basic Auction Environments
Auction environments are settings in which goods are sold to bidders. We distinguish
between items — different kinds of goods, and units — different copies of the same
good. While bidders have the same value for different units of the same item, their
values for different items are independent from one another (although possibly drawn
from the same distribution). We use the following notation: item j means the j-th kind
of good sold in the auction, kj denotes the number of units available of item j, and
m =

∑
j kj is the total number of units available of all items.



Our results apply to two basic auction environments — in the first there are k mul-
tiple units of a single item, and in the second there are m multiple items but only
one unit of each. In both cases we will assume there are at least n ≥ 2 bidders, since
prior-independence is impossible with a single bidder (in the sense that for every prior-
independent mechanism there is an environment for which the mechanism’s approx-
imation guarantee is arbitrarily poor). We now describe the two environments of in-
terest in more detail; for extensions of these environments and generalizations of our
results see Section 6.

2.1.1. Single-Parameter k-Unit Environments. In general, a single-parameter auction en-
vironment is composed of a set {1, . . . , n} of bidders, and a non-empty collection
I ⊆ 2{1,...,n} containing subsets of bidders who can win the auction simultaneously.3
Subsets in I are called feasible allocations. We assume that every subset of a feasible
allocation is also feasible (formally, the set system ({1, . . . , n}, I) is downward-closed).
We also assume that every bidder belongs to at least one feasible allocation. Every bid-
der i has a private value vi for winning, which is drawn independently at random from
a distribution Fi (the environment is called single-parameter since the value for win-
ning is described by one parameter). We say the bidders are i.i.d. if their distributions
are independent and identical.

A k-unit (or multi-unit) environment is a single-parameter environment in which a
subset of bidders is a feasible allocation if and only if its size is at most k (we assume
k ≤ n). This captures the situation where there are k identical units of the same item
for sale, and every bidder is unit-demand, i.e., interested in buying at most one unit.
We can also impose an additional supply limit of ℓ ≤ k, restricting feasible allocations
to size at most ℓ. An i.i.d. k-unit environment is one in which the bidders are i.i.d; our
supply-limiting results apply to such environments.

2.1.2. Multi-Parameter Matching Environments. A (single-unit) matching environment is a
multi-parameter environment with n bidders and m different items for sale. We only
have one unit of each item available, and a multi-unit version of matching environment
will be defined later. Bidders are unit-demand, in the sense that each bidder can only
win at most one item. Feasible allocations are all matchings of items to bidders, such
that each bidder wins at most one item and each item is assigned to at most one bidder.
We can also impose an additional supply limit of ℓ ≤ m, restricting the matchings to
size at most ℓ. Bidder i has a private value vi,j for winning item j, which is drawn
independently at random from a distribution Fi,j . We say the bidders are i.i.d. if Fi,j

does not depend on i, which we can simply denote by Fj . Our supply-limiting results
apply to i.i.d. matching environments in which the bidders are i.i.d.

2.2. Mechanisms
Our work focuses on deterministic mechanisms (but applies to randomized mecha-
nisms with only a constant-factor loss).4 A deterministic mechanism is comprised of

— an allocation rule x, which maps a bid vector b ∈ [0,∞)n in the single-parameter
case or b ∈ [0,∞)nm in the multi-parameter case to a feasible allocation; and

— a payment rule p, which maps a bid vector b to a payment vector in [0,∞)n.

3This description of a single-parameter environment is sufficient for our purpose; more general definitions
can be found in the literature.
4Chawla et al. [2010b] show that for matching environments, the expected revenue from the optimal de-
terministic mechanism is within a constant factor of the expected revenue from the optimal randomized
mechanism. Thus our results for deterministic mechanisms apply to randomized mechanisms up to a con-
stant factor.



We assume a quasi-linear utility model, in which each bidder aims to maximize her
value for the chosen allocation minus her payment for it. A mechanism is truthful if
given any bid profile b−i, bidder i maximizes her utility by being truthful, i.e., bidding
bi = vi in the single-parameter case and bi,j = vi,j in the multi-parameter case. All
the mechanisms we study are both truthful and individually rational — the utility
for bidding truthfully is always non-negative. From now on we no longer distinguish
between bids and values and use vi or vi,j to denote both.

The famous VCG mechanism is of special interest to us [Vickrey 1961; Clarke 1971;
Groves 1973]. It maximizes social welfare by choosing a feasible allocation x∗ that
maximizes the total value to the bidders, and charges every bidder i a payment equal
to i’s “externality” — the difference between the maximum total value if i does not
participate in the auction and the value of all other bidders when i does participate.
In the context of single-item environments the VCG mechanism is called the Vickrey
auction. We augment the VCG mechanism by adding to it a supply limit of ℓ, such that
the total number of allocated units in its chosen allocation is at most ℓ; we denote this
supply-limiting VCG mechanism by VCG≤ℓ.

2.3. Optimal Mechanism Design
2.3.1. Myerson’s Mechanism for Single-Parameter Environments. For single-parameter en-

vironments, Myerson [1981] determined the optimal mechanism that maximizes ex-
pected revenue. Given a distribution F with density f , define its virtual valuation
function to be ϕF (v) = v − 1−F (v)

f(v) . Myerson showed the following.

LEMMA 2.1 (MYERSON’S LEMMA). Given a single-parameter environment and a
truthful mechanism (x,p), for every bidder i and fixed value profile v−i of the other
bidders, Evi∼Fi [pi(v)] = Evi∼Fi [ϕFi(vi) · xi(v)].

Myerson’s lemma implies that maximizing expected revenue can be reduced to max-
imizing the expected total virtual value of the bidders, also called virtual surplus. My-
erson’s mechanism maximizes virtual surplus and is optimal by the above lemma.

2.3.2. The Regularity Assumption

Definition 2.2 (Regular Distribution). A distribution F is regular if its virtual val-
uation function is monotone non-decreasing.

Most of the commonly-studied distributions are regular, including the uniform, ex-
ponential and normal distributions. We say that bidders are regular if their values are
drawn from regular distributions. The assumption that bidders are regular is stan-
dard in optimal mechanism design, in particular when aiming for simplicity and/or
prior-independence. In what follows we assume that all distributions are regular and
possess positive smooth density functions.

2.3.3. Representative Environments for Upper-Bounding Optimal Multi-Parameter Revenue. The
optimal mechanism for multi-parameter matching environments is currently un-
known. Chawla et al. [2010a] introduced the concept of representative environments
in order to upper-bound the optimal expected revenue in i.i.d. matching environments
despite not knowing the optimal mechanism.

Given a matching environment Env with m items, n i.i.d. bidders and value-
distributions {Fj}j , the representative environment Envrep has the same m items but
nm single-parameter bidders, one for every pair of original bidder and item (i, j). The
m bidders in Envrep corresponding to original bidder i are called i’s representatives.
Like bidder i’s value for item j in Env, representative (i, j)’s value vi,j for winning in
Envrep is drawn independently at random from Fj . Note that every subset S of repre-



sentatives in Envrep corresponds to an allocation in Env — if representative (i, j) is in S
then item j is allocated to bidder i in Env. Feasible allocations in Envrep are subsets of
representatives such that the corresponding allocation in Env is feasible. In particular,
since every bidder i in Env is unit-demand, only one of its representatives in Envrep

can win simultaneously.
Given a truthful mechanism M for Env, its allocation rule can be used to construct a

truthful mechanism M rep for Envrep. The following lemma relates the expected revenue
of the two mechanisms. Intuitively, Envrep involves more competition than Env since
representatives of the same bidder compete with one another, and so the expected
revenue of M rep is higher.

LEMMA 2.3 ([CHAWLA ET AL. 2010A]). The expected revenue of M rep for Envrep up-
per bounds the expected revenue of M for Env.

3. WARM-UP: A SUPPLY-LIMITING MECHANISM FOR I.I.D. k-UNIT ENVIRONMENTS
In this section we formally prove the following theorem, discussed informally in the
introduction, in order to illustrate our general reduction in a simple single-parameter
environment. To simplify notation we assume that the number of bidders n is even.
This assumption is essentially without loss of generality since if n is odd, one can first
remove a bidder from the environment, losing at most a 1/n-fraction of the optimal
expected revenue.

THEOREM 3.1 (SUPPLY-LIMITING MECHANISM FOR I.I.D. k-UNIT ENVIRONMENTS).
For every k-unit environment with n ≥ 2 i.i.d. regular bidders, the expected revenue
of the supply-limiting mechanism VCG≤n/2 is a min{2, n

n−k}-approximation to the
optimal expected revenue.

The proof of Theorem 3.1 using the reduction requires the following slightly gener-
alized version of the original Bulow-Klemperer theorem [1996].

THEOREM 3.2 ((GENERALIZED) BULOW-KLEMPERER THEOREM). For every k-
unit environment with i.i.d. regular bidders and supply limit ℓ, the expected revenue
of VCG with min{k, ℓ} additional bidders is at least as high as the optimal expected
revenue.

PROOF OF THEOREM 3.1. We instantiate our general reduction (Reduction 2) as
follows.

(1) Restriction: Remove min{n
2 , k} bidders from the environment, and if k > n

2 limit
the supply to n

2 units.
(2) Augmentation: Add back min{n

2 , k} bidders.

We first claim that the restriction step reduces the expected optimal revenue by
only a small constant factor. By submodularity of the expected optimal revenue in the
bidder set [Dughmi et al. 2009, Theorem 3.1], removing bidders from the environment
reduces the optimal expected revenue by a factor of at most min{2, n

n−k}. Limiting
the supply to n

2 when k > n
2 does not affect the optimal expected revenue since the

bidders are unit-demand and since in this case the number of bidders in the restricted
environment is n

2 .
We now apply the Bulow-Klemperer theorem as stated in Theorem 3.2 to the re-

stricted environment. If k > n
2 , the restricted environment has n

2 bidders, k units and
supply limit n

2 , while if k ≤ n
2 , the restricted environment has n − k bidders and k

units. In both cases, by the Bulow-Klemperer theorem, the expected revenue of VCG
with min{n

2 , k} additional bidders is at least as high as the optimal expected revenue.



We have shown that running VCG with min{n
2 , k} additional bidders on the re-

stricted environment is a min{2, n
n−k}-approximation to the optimal expected revenue

on the original environment. But this is equivalent to running the supply-limiting
mechanism VCG≤n/2 on the original environment (where the supply limit of n

2 is vac-
uous if k ≤ n

2 ) . This completes the proof.

The approximation factor in the above theorem is asymptotically tight, by a simple
proof deferred to the full version of the paper.

PROPOSITION 3.3 (ASYMPTOTIC TIGHTNESS). For every 0 ≤ ρ ≤ 1, there exists
an n-unit environment with n i.i.d. bidders whose values are drawn from a regular
distribution F such that VCG≤ρn gives in expectation at most ( 12 + o(1))-fraction of the
optimal expected revenue.

4. A SUPPLY-LIMITING MECHANISM FOR I.I.D. MATCHING ENVIRONMENTS
4.1. Statement and Discussion of Main Theorems
In this section we present our main result — a supply-limiting mechanism for i.i.d.
matching environments. More precisely, we present three alternative supply-limiting
mechanisms, all VCG-based, with different approximation factors depending on the
parameters n and m of the i.i.d. matching environment. The relation between the num-
ber of bidders n and total number of items m in the environment at hand determines
which supply-limiting mechanism is most suitable for it.

We denote the revenue from the optimal mechanism for n bidders by OPT(n), and
the revenue from the supply-limiting VCG mechanism for n bidders by VCG≤ℓ(n),
sometimes omitting ℓ from the notation when ℓ ≥ min{n,m}. Note that OPT(n) and
VCG≤ℓ(n) are random variables over the sample space of bidder valuation profiles v.
All expectations below are over v.

For simplicity of notation we will assume that n/2 (or n/3 where appropriate) is
integer. If this is not the case, the approximation guarantees below hold up to a small
multiplicative factor (the maximum loss in optimal expected revenue from dropping
one or two bidders from the environment).

THEOREM 4.1 (2-APPROXIMATION FOR m ≤ n/2). For every matching environ-
ment with n ≥ 2 i.i.d. regular bidders and m ≤ n/2 items, E[VCG(n)] ≥ 1

2E[OPT(n)].

THEOREM 4.2 (4mn -APPROXIMATION FOR m ≥ n/2). For every matching environ-
ment with n ≥ 2 i.i.d. regular bidders and m ≥ n/2 items, E[VCG≤n/2(n)] ≥
n
4mE[OPT(n)].

THEOREM 4.3 (27-APPROXIMATION FOR GENERAL n,m). For every matching en-
vironment with n ≥ 3 i.i.d. regular bidders and m items, E[VCG≤n/3(n)] ≥
1
27E[OPT(n)].

Intuitively, achieving good approximation guarantees becomes more difficult as the
number of items grows relative to the number of bidders, since the natural competi-
tion among the bidders in the environment is diversified across different items. Ac-
cordingly, when number of items is less than half of the number of bidders, we show
that simply applying VCG achieves a 2-approximation to the optimal expected revenue
(Theorem 4.1). When the number of items is more than half of the number of bidders
but still proportional to it, applying VCG while artificially limiting the supply to half of
the number of bidders achieves a 4m

n -approximation, in particular a 4-approximation
when m = n (Theorem 4.2). Finally, when the number of items is possibly much larger
than the number of bidders, limiting the supply still achieves a constant-factor approx-



imation but with a larger constant. We find that setting the supply limit to a third of
the number of bidders guarantees a 27-approximation (Theorem 4.3). We believe this
approximation factor can be further improved, and leave this as an open problem.

The remainder of the paper is largely dedicated to proving the first two of the above
theorems. The proof of Theorem 4.3 is more involved, and its details appear only in
the full version of the paper.5 More specifically, by applying our general reduction, all
proofs boil down to proving appropriate Bulow-Klemperer-type theorems. In Section
4.2 we state these theorems and in Section 4.3 we show how the main theorems reduce
to them. The proofs of the Bulow-Klemperer-type theorems themselves are the main
technical contribution of our work, and appear in Section 5 (for those corresponding to
the first two main theorems) and in the full version (for that corresponding to Theorem
4.3).

4.2. Statement and Discussion of Multi-Parameter Bulow-Klemperer-Type Theorems
In order to prove Theorems 4.1 to 4.3 via our general reduction, we need the following
corresponding Bulow-Klemperer-type theorems.

THEOREM 4.4 (B-K WITH m MORE BIDDERS). For every matching environment
with n i.i.d. regular bidders and m items, E[VCG(n+m)] ≥ E[OPT(n)].

THEOREM 4.5 (mn -APPROXIMATE B-K FOR m ≥ n WITH n MORE BIDDERS).
For every matching environment with n i.i.d. regular bidders and m ≥ n items,
E[VCG≤n(2n)] ≥ n

mE[OPT(n)].

THEOREM 4.6 (9-APPROXIMATE B-K WITH 2n MORE BIDDERS). For every match-
ing environment with n i.i.d. regular bidders and m items, E[VCG≤n(3n)] ≥
1
9E[OPT(n)].

For proofs see Section 5 (Theorems 4.4 and 4.5) and full version (Theorem 4.6).
The first of the above Bulow-Klemperer-type theorems states that for matching en-

vironments with m items, the expected revenue of VCG with m additional bidders is
at least as high as the optimal expected revenue. This generalizes the original Bulow-
Klemperer theorem to the more complex multi-parameter matching setting. If m ≫ n
however, the required resource augmentation — adding m bidders when originally
there are only n — is substantial, which will cause our reduction to give weak bounds.

Our second and third Bulow-Klemperer-type theorems address this issue by requir-
ing the addition of O(n) bidders. This is made possible by using supply-limiting VCG,
which restricts the total number of allocated items to at most n out of the m items avail-
able, and by relaxing the optimality requirement to approximate-optimality. Theorem
4.5 provides a good approximation factor when m is larger than n but proportional to
it. Theorem 4.6 guarantees a constant approximation factor of 9 for any values of n,m.

4.3. Proof of Main Theorems by Applying the General Reduction
We now reduce the three main theorems to the three Bulow-Klemperer-type theorems
by instantiating our general reduction. The following lemma is the key and may be
of independent interest. It applies to general auction environments (including multi-
parameter ones) and states that the optimal expected revenue achievable from two
sets of bidders separately exceeds that is achievable from the union of the two sets.
A corollary of this subadditivity lemma is that if we remove bidders from an i.i.d.
environment until only a constant fraction of the bidders are left, we still maintain a
constant fraction of the optimal expected revenue.

5Available from the authors upon request.



Let OPT(S) denote the optimal expected revenue achievable from bidder set S.

LEMMA 4.7 (SUBADDITIVITY OF OPTIMAL EXPECTED REVENUE IN BIDDER SET).
For every auction environment with bidder subsets S and T , E[OPT(S)] + E[OPT(T )] ≥
E[OPT(S ∪ T )].

PROOF. It is easy to prove that OPT(S) is monotone in S, and therefore we can
assume that S and T are disjoint. Let M be the optimal mechanism for S ∪ T . For
every valuation profile vT of bidders in T , we define the following mechanism MvT

.
The mechanism MvT

gets bids from bidders in S, and simulates M by using vT as the
“bids” of bidders in T . By an averaging argument, there exists a vector vT such that
mechanism MvT

’s expected revenue EvS
[MvT

(S)] is at least the part of the optimal
expected revenue EvS ,vT [M(S∪T )] that comes from S, and the expected revenue of MvT

is upper-bounded in turn by E[OPT(S)]. Similarly, the part of the optimal expected
revenue that comes from T is upper-bound by E[OPT(T )]. Summing up we have the
desired subadditivity claim.

COROLLARY 4.8. For every auction environment with n i.i.d. bidders and for every
integer c that divides n, E[OPT(n/c)] ≥ 1

cE[OPT(n)].

4.3.1. Reduction Instantiations

PROOF OF THEOREM 4.1. We need to show E[VCG(n)] ≥ 1
2E[OPT(n)] under as-

sumptions of i.i.d. bidders, regularity and m ≤ n/2. We instantiate our general re-
duction (Reduction 2) as follows.

(1) Restriction: Remove m bidders from the environment.
(2) Augmentation: Add back m bidders.

By Corollary 4.8 of the subadditivity property and by monotonicity of the optimal ex-
pected revenue, restricting the environment does not hurt the optimal expected rev-
enue too much, i.e., E[OPT(n)] ≤ 2E[OPT(n/2)] ≤ 2E[OPT(n − m)]. Applying the ap-
propriate Bulow-Klemperer-type theorem, Theorem 4.4, to the restricted environment
with n − m bidders and m items, gives E[OPT(n − m)] ≤ E[VCG(n)], completing the
proof.

PROOF OF THEOREM 4.2. We need to show E[VCG≤n/2(n)] ≥ n
4mE[OPT(n)] under

assumptions of i.i.d. bidders, regularity and m ≥ n/2. We instantiate the reduction as
follows.

(1) Restriction: Remove n/2 bidders from the environment.
(2) Augmentation: Add back n/2 bidders.

As above, the proof is by the inequality chain E[OPT(n)] ≤ 2E[OPT(n/2)] ≤
4m
n E[VCG≤n/2(n)], where the first inequality is by Corollary 4.8, and the second in-

equality is by applying the appropriate Bulow-Klemperer-type theorem (Theorem 4.5)
to the restricted environment with n/2 bidders and m ≥ n/2 total units.

PROOF OF THEOREM 4.3. We need to show E[VCG≤n/3(n)] ≥ 1
27E[OPT(n)] under

assumptions of i.i.d. bidders and regularity. We instantiate the reduction as follows.

(1) Restriction: Remove 2
3n bidders from the environment.

(2) Augmentation: Add back 2
3n bidders.

As above, the proof is by the inequality chain E[OPT(n)] ≤ 3E[OPT(n/3)] ≤
27E[VCG≤n/3(n)], where the first inequality is by Corollary 4.8, and the second in-



equality is by applying the appropriate Bulow-Klemperer-type theorem (Theorem 4.6)
to the restricted environment with n/3 bidders and m items.

5. PROOF OF BASIC BULOW-KLEMPERER-TYPE THEOREMS FOR I.I.D. MATCHING
ENVIRONMENTS

In this section we prove two Bulow-Klemperer-type theorems for i.i.d. matching envi-
ronments — Theorems 4.4 and 4.5. Theorem 4.6 is much more challenging to prove
and is not dealt with in this section.

We begin with the proof of Theorem 4.4, divided into two parts. In Section 5.1 we
identify an upper bound on the optimal expected revenue in the original environment,
and a lower bound on the revenue of the VCG mechanism in the augmented environ-
ment. The advantage of this step is that these bounds are relatively simple to analyze
and are already similar in form, though not identical. In Section 5.2 we carefully relate
the two bounds, thus establishing the theorem. In Section 5.3 we show how the proof
extends to establish Theorem 4.5 as well.

5.1. Basic Upper and Lower Bounds
Let Vicj(n + 1) be the revenue from selling item j to n + 1 i.i.d. bidders with value-
distribution Fj using the Vickrey (second-price) auction. We use the concept of rep-
resentative environment to show that the optimal expected revenue from selling all
items to n bidders in an i.i.d. matching environment is upper-bounded by the expected
revenue from selling each item separately to n+ 1 single-parameter bidders.

LEMMA 5.1 (UPPER BOUND ON OPTIMAL EXPECTED REVENUE). For every
matching environment with n i.i.d. regular bidders, E[OPT(n)] ≤

∑
j E[Vicj(n+ 1)].

PROOF. Given the matching environment, consider the corresponding complete bi-
partite graph with bidders on one side and items on the other, and the bidders’ values
for items drawn from distributions {Fj}j as edge weights; recall that feasible allo-
cations correspond to matchings. By Lemma 2.3, the optimal expected revenue in the
matching environment is upper-bounded by the optimal expected revenue in its single-
parameter counterpart, the corresponding representative environment.

We now relax the feasibility constraints, by which we may only increase the optimal
expected revenue. We define a new environment in which feasible allocations are all
subsets of edges such that at most one edge is incident to an item-node (but unlike
a matching, multiple edges can be incident to every bidder-node). Observe that the
new environment is equivalent in terms of revenue to a collection of m single-item
environments, where in the j-th environment item j is auctioned to n single-parameter
bidders whose values are drawn i.i.d. from the regular distribution Fj . By the original
Bulow-Klemperer theorem (Theorem 3.2), the optimal expected revenue from the j-th
environment is upper-bounded by E[Vicj(n+1)]. Summing up over all items completes
the proof.

The revenue from the VCG mechanism is the sum of VCG payments for allocated
items. We lower-bound the VCG payment for an allocated item j.

OBSERVATION 5.2 (LOWER BOUND ON VCG REVENUE). For every matching envi-
ronment, the VCG payment for item j is at least the value of any unallocated bidder for
j.

PROOF. If bidder i wins item j, then the VCG payment for j is equal to the exter-
nality that i imposes on the rest of the bidders by winning j. Since i prevents any
unallocated bidder from getting j, the payment is at least the unallocated bidder’s
value for j.



In our matching context, the upper and lower bounds above turn out to share a
similar form. On one hand, by definition of the Vickrey auction, the upper bound
E[Vicj(n+1)] on the expected revenue from separately auctioning item j is equal to the
second-highest value for j among n+1 bidders with values drawn independently from
Fj . On the other hand, the lower bound on the VCG payment for item j in the aug-
mented environment is equal to the highest value for j among n unallocated bidders
with values drawn independently from Fj . We are using here the fact that since the
augmented environment includes m more bidders, all items are allocated and exactly
m out of n+m bidders are allocated.

From this it may appear as if we have already shown that the lower bound exceeds
the upper bound. However, a dependency issue arises — conditioned on the event that
a bidder in the augmented environment is unallocated by VCG, her value for item j
is no longer a random sample from Fj . We address this issue in the next section by
introducing a deferred allocation selling procedure.

5.2. Relating the Upper and Lower Bounds via Deferred Allocation
Algorithm 3 describes a deferred allocation procedure for selling item j.

ALGORITHM 3: Selling Item j by Deferred Allocation
Given a matching environment with n+m bidders and m items:

(1) Find a welfare-maximizing feasible allocation (a maximum matching) of all items other
than j to a subset of the bidders.
Let U be the set of n+ 1 bidders who remain unallocated.

(2) Run the Vickrey auction to sell item j to bidder set U .

We now show how deferred allocation resolves the dependency issue. Consider the
revenue from selling item j to bidder set U by the deferred allocation procedure de-
scribed in Algorithm 3. We use this revenue to relate the upper and lower bounds
found in the previous section, as depicted in Figures 1a to 1c.

Claim 5.3 (Relating to Upper Bound). The revenue from selling item j by deferred
allocation is equal in expectation to E[Vicj(n+ 1)].

PROOF. Observe that the revenue from selling item j to bidder set U by the Vickrey
auction is the second-highest value of a bidder in U for j. Since we exclude item j
in step (1) of the deferred allocation procedure and allocate it only in step (2), the
allocation in step (1) does not depend on the bidders’ values for j. Therefore, the values
of the unallocated bidders in U for item j are still independent random samples from
Fj . The expected second-highest among n + 1 values drawn independently from Fj is
equal to E[Vicj(n+ 1)].

To relate to the lower bound in Claim 5.2, we need the following stability property.

Claim 5.4 (Stability). For every value profile of the augmented matching environ-
ment, the set of bidders left unallocated by VCG is U with at most one bidder removed.

PROOF. Given the augmented matching environment, consider again the corre-
sponding complete bipartite graph with bidders on one side and items on the other,
and the bidders’ values for items as edge weights. The VCG mechanism finds the



maximum-weighted matching in this graph.6 Our claim is a direct corollary of the
following well-known property of matchings (see, e.g., [Wastlund 2008, Lemma 2.2]).
Starting with a maximum-weighted matching of size m − 1, if we add a node (the
excluded item j) to one side of the bipartite graph and find the maximum-weighted
matching of size m, the set of matched nodes on the other side remains the same up to
a single additional node.

Using this claim we can lower-bound the VCG payment for item j in the augmented
environment.

Claim 5.5 (Relating to Lower Bound). For every value profile of the augmented
matching environment, the VCG payment for item j is at least the revenue from selling
item j by deferred allocation.

PROOF. The revenue from selling item j by deferred allocation is the second-highest
value of a bidder in U for j. Let i1, i2 be the two bidders in U who value item j the most.
By definition, these bidders are left unallocated by the deferred allocation procedure,
and by the previous claim, one of them (say i1) is also unallocated by the VCG mecha-
nism. Recall that an unallocated bidder’s value for item j gives a lower bound on the
VCG payment for j (Observation 5.2). So the VCG payment for j is at least vi1,j , which
in turn is at least the second-highest value of a bidder in U for item j.

Putting everything together, we can now complete the proof of the Bulow-Klemperer-
type theorem.

PROOF OF THEOREM 4.4 (B-K FOR MATCHING WITH m MORE BIDDERS). We
need to show that for every matching environment with n i.i.d. regular bidders and m
total units, E[VCG(n + m)] ≥ E[OPT(n)]. By Claim 5.5, the VCG payment for item j
in the augmented environment is at least the revenue from selling item j by deferred
allocation, which by Claim 5.3 is equal in expectation to E[Vicj(n + 1)]. Summing up
over all items, the total expected VCG revenue in the augmented environment is at
least

∑
j E[Vicj(n + 1)], and by Lemma 5.1 this upper-bounds the optimal expected

revenue in the original environment.

5.3. The Case of m ≥ n

PROOF OF THEOREM 4.5 (B-K FOR MATCHING WITH n MORE BIDDERS). We
need to show that for every matching environment with n i.i.d. regular bidders and
m ≥ n items, E[VCG≤n(2n)] ≥ n

mE[OPT(n)]. The proof is similar to that of Theorem
4.4; here we highlight the necessary adjustments.

The upper bound on the optimal expected revenue remains
∑

j E[Vicj(n+1)] (Lemma
5.1). As for the lower bound, it is no longer the case that in the augmented environment
all items are allocated, and so we make use of a generalization of Observation 5.2 —
the VCG payment for item j is lower-bounded not only by the value of any unallocated
bidder for j itself, but also by the value of any unallocated bidder for any unallocated
item. We call the highest of the latter among all unallocated bidders and items the
global lower bound on VCG payments, and denote it by G. Note that since VCG is
now applied with a supply limit of n, exactly n out of the 2n bidders in the augmented
environment remain unallocated.

We use the modified deferred allocation selling procedure in Algorithm 4; observe
that Claims 5.3, 5.4 and 5.5 hold. For Theorem 4.4 these claims were sufficient to com-

6We assume there is a unique maximum-weighted matching. This holds with probability 1 as all distribu-
tions have smooth density functions.
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Fig. 1: Example of relating bounds by deferred allocation (n = 2,m = 2).
(a) Applying VCG to augmented matching environment (not all edges are shown). Solid
edges correspond to maximum-weighted matching. Payment for item j = 2 is at least
max{v2,2, v4,2} (Observation 5.2). Values of unallocated bidders are not i.i.d. samples
from distribution F2.
(b) Applying deferred allocation for item j = 2 to augmented matching environment.
Solid edge corresponds to maximum-weighted matching excluding j = 2. The set U
is a superset of the unallocated bidders in (a) (Claim 5.4). Payment for j = 2 is
max2{v1,2, v2,2, v4,2} ≤ max{v2,2, v4,2}, where max2 is the second-highest value (Claim
5.5). Values of bidders in U are i.i.d. samples from F2.
(c) Applying Vickrey for item j = 2 to n+1 bidders, as part of the upper bound (Lemma
5.1). Values of bidders are i.i.d. samples from F2 so in expectation we get the same
payment for j = 2 as from deferred allocation (Claim 5.3).

ALGORITHM 4: Selling Item j by Deferred Allocation — The Case of m ≥ n

Given a matching environment with 2n bidders and m items:

(1) Find a welfare-maximizing feasible allocation (a maximum matching) of n− 1 items other
than j to a subset of the bidders.
Let U be the set of n+ 1 bidders who remain unallocated.

(2) Run the Vickrey auction to sell item j to bidder set U .

plete the proof, by applying the following chain of arguments: all items are allocated
by VCG in the augmented environment; the VCG payment for item j is at least the
revenue from selling j by deferred allocation; the deferred allocation revenue is equal
in expectation to E[Vicj(n + 1)]; and

∑
j E[Vicj(n + 1)] is at least the optimal expected

revenue. However, for Theorem 4.5, we need an additional charging argument, since
only n out of m items are allocated by VCG.

(1) If item j is allocated by VCG, then as above the VCG payment for it is at least the
revenue from selling j by deferred allocation.

(2) If item j is not allocated by VCG, then the VCG payment for any allocated item
j′ ̸= j is at least the global lower bound G, and so is at least the revenue from
selling j by deferred allocation (cf. Claim 5.5).

By the above, we can charge the VCG payments for the n allocated items against
the total revenue from selling all m items by deferred allocation, which is equal in
expectation to E[Vicj(n+ 1)], thus obtaining an approximation factor of m

n .



6. ADDITIONAL RESULTS
In this section we list additional results, whose proofs appear in the full version of the
paper.

6.1. Single-Parameter Environments
6.1.1. A Supply-Limiting Mechanism for I.i.d. Matroid Environments. A matroid environment

is a single-parameter environment in which the set system ({1, . . . , n}, I) of bidders
and feasible allocations forms a matroid (for an exposition on matroids see, e.g., [Oxley
1992]). Recall that the rank of a matroid is the size of its bases, and the packing number
of a matroid is its maximum number of disjoint bases.

THEOREM 6.1 (SUPPLY-LIMITING MECHANISM FOR I.I.D. MATROIDS). For every
matroid environment with n ≥ 2 i.i.d. regular bidders, rank r and packing number κ

(1) If κ ≥ 2 then the expected revenue of the VCG mechanism is a 2-approximation to
the optimal expected revenue.

(2) If κ = 1 then the expected revenue of the supply-limiting mechanism VCG≤⌊r/2⌋ is a
4-approximation to the optimal expected revenue.

The proof is by instantiating the general reduction, where the restriction and aug-
mentation consist roughly of removing and adding back a basis of bidders, and apply-
ing Dughmi et al.’s [2009, Lemma 6.1] Bulow-Klemperer-type result for i.i.d. matroid
environments. For completeness we state their result.

THEOREM 6.2 (B-K FOR I.I.D. MATROID ENVIRONMENTS). For every matroid en-
vironment with i.i.d. regular bidders, the expected revenue of VCG with an additional
matroid-basis of bidders is at least as high as the optimal expected revenue.

6.1.2. A Tighter Bulow-Klemperer-Type Theorem for Parallel Multi-Unit Environments. A single-
parameter parallel kj-unit (or parallel multi-unit) environment consists of a kj-unit
auction for each item j, and these auctions are related by a global supply limit ℓ. To be
specific, for each item j, there are kj ≤ n units available, and n unit-demand bidders
interested in it, whose values are drawn i.i.d. from a regular distribution Fj . There
is a total of m =

∑
j kj units, of which at most ℓ can be allocated at the same time.

In other words, a feasible allocation is a set of bidders containing at most min{n, ℓ}
bidders overall and at most kj bidders per item j. We can also impose a local supply
limit ℓj on the number of units allocated of item j.

A parallel multi-unit environment is a particular case of a matroid environment (the
underlying matroid being the intersection of a partition matroid with an ℓ-uniform
matroid). As such, the Bulow-Klemperer-type theorem for non-i.i.d. matroid environ-
ments by Hartline and Roughgarden [2009, Theorem 4.4] applies to it. However, this
theorem requires augmenting the environment with an additional ”duplicate” bidder
for every original bidder, and adding the constraint that at most one of each pair of
duplicates wins simultaneously. This is wasteful, as many of the original bidders in a
parallel multi-unit environment are i.i.d., namely, all bidders interested in the same
item j. The following theorem shows that it is sufficient to augment the environment
with only kj additional bidders per item j.

THEOREM 6.3 (B-K FOR PARALLEL MULTI-UNIT ENVIRONMENTS). For every
parallel kj-unit environment with local supply limits {ℓj}, the expected revenue of VCG
with min{kj , ℓj} additional bidders per item j is a 2-approximation to the optimal
expected revenue.

The proof of this theorem uses a commensuration argument developed by Hartline
and Roughgarden, and applies the FKG inequality to solve dependency issues. One



application of this theorem is in our proofs of supply-limiting results for i.i.d. multi-
unit matching environments (see Section 6.2 and full version). Also, we can readily use
this Bulow-Klemperer-type theorem to derive a corresponding supply-limiting mech-
anism for parallel multi-unit environments. However to keep the description simple,
in the following we derive a supply-limiting mechanism for a natural subclass of such
environments, namely attribute-based non-i.i.d. multi-unit environments.

Attribute-Based Environments. Consider a single-parameter k-unit environment,
where every bidder has a publicly-observable attribute a, say age bracket, which deter-
mines her (regular) distribution Fa. In other words, the values are i.i.d. for bidders with
the same attribute, and are independent but not necessarily identically distributed for
bidders with different attributes. Furthermore, assume that the environment is non-
singular in the sense that there is no bidder with a unique attribute. (This setting was
first introduced by Dhangwatnotai et al. [2010].)

Now consider the following supply-limiting mechanism. For every set of na bidders
with the same attribute a (and hence the same distribution), impose a local supply
limit of min{k, na

2 } on the number of units that can be allocated to this bidder set, and
run VCG (we assume here that na is even; the case of odd na can be handled with a
small loss).

THEOREM 6.4 (SUPPLY-LIMITING FOR ATTRIBUTE-BASED ENVIRONMENTS).
For every non-singular k-unit environment with attribute-based regular bidders, the
expected revenue of the above supply-limiting VCG mechanism is a 4-approximation to
the optimal expected revenue.

PROOF. We instantiate our reduction as follows.

(1) Restriction: For every a, remove min{k, na

2 } bidders with attribute a from the
environment, and if k ≥ na

2 , limit the supply for bidders with attribute a to na

2
units.

(2) Augmentation: For every a, add back min{k, na

2 } bidders with attribute a.

In the restriction step, we remove at most half of the bidders and so lose a factor of at
most 2 [Dughmi et al. 2009, Theorem 3.1]. Note that limiting the supply has no effect
on the revenue, and that after the restriction we essentially have a global supply limit
of min{k,

∑
a

na

2 } on the restricted environment. Therefore, even though there is just
a single item, we can view this as a parallel multi-unit environment with bidder sets
of size max{na − k, na

2 }, a global supply limit of min{k,
∑

a
na

2 }, and local supply limits
of min{k, na

2 }. Now we can apply Theorem 6.3 to conclude that in the augmentation
step we lose at most another factor of 2. We have thus shown that running VCG on
the restricted environment with min{k, na

2 } additional bidders per attribute a is a 4-
approximation to the optimal expected revenue on the original environment, and this
is equivalent to running the supply-limiting mechanism on the original environment,
completing the proof.

We remark that this supply-limiting mechanism is considerably simpler than Myer-
son’s optimal mechanism for this setting, which requires computing different virtual
value functions for different attributes.

6.2. Supply-Limiting Mechanisms for I.i.d. Multi-Unit Matching Environments
A kj-unit (or multi-unit) matching environment is a multi-parameter matching envi-
ronment with multiple units per item. There are kj units of every item j and a total of
m =

∑
j kj units. We can also impose an additional global supply limit ℓ ≤ m on the



total number of allocated units, and/or local supply limits {ℓj} where ℓj ≤ kj is on the
number of allocated units of every item j.

Two out of the three supply-limiting mechanisms in Section 4 for i.i.d. matching
environments apply directly to i.i.d. multi-unit matching as well. In fact, Theorems
4.1 and 4.2 hold without change for multiple units. Recall that Theorem 4.3 gives a
constant approximation guarantee in the challenging case where the number of items
m is much larger than the number of bidders n. In order to generalize this theorem to
multi-unit matching, we introduce a slightly more general supply-limiting mechanism.
Let VCG≤ℓ,≤ℓj be the VCG mechanism with a global supply limit ℓ on the total number
of allocated units, and local supply limits {ℓj} on the number of allocated units of every
item j. We then have the following multi-unit version of Theorem 4.3.

THEOREM 6.5 (27-APPROXIMATION FOR MULTIPLE UNITS). For every multi-unit
matching environment with n ≥ 3 i.i.d. regular bidders, m total units and kj units per
item j, E[VCG≤n/3,≤⌈kj/2⌉(n)] ≥ 1

27E[OPT(n)].

We prove this theorem via our general reduction, using the following multi-unit ver-
sion of the Bulow-Klemperer-type result in Theorem 4.6.

THEOREM 6.6 (9-APPROXIMATE B-K FOR MULTIPLE UNITS). For every multi-
unit matching environment with n i.i.d. regular bidders, m total units and kj units per
item j, E[OPT(n)] ≤ 9E[VCG≤n,≤⌈kj/2⌉(3n)].
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