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ABSTRACT
The existing literature on optimal auctions focuses on op-
timizing the expected revenue of the seller, and is appropri-
ate for risk-neutral sellers. In this paper, we identify good
mechanisms for risk-averse sellers. As is standard in the eco-
nomics literature, we model the risk-aversion of a seller by
endowing the seller with a monotone concave utility func-
tion. We then seek robust mechanisms that are approxi-
mately optimal for all sellers, no matter what their levels of
risk-aversion are.

We have two main results for multi-unit auctions with
unit-demand bidders whose valuations are drawn i.i.d. from
a regular distribution. First, we identify a posted-price
mechanism called the Hedge mechanism, which gives a uni-
versal constant factor approximation; we also show for the
unlimited supply case that this mechanism is in a sense the
best possible. Second, we show that the VCG mechanism
gives a universal constant factor approximation when the
number of bidders is even only a small multiple of the num-
ber of items. Along the way we point out that Myerson’s
characterization of the optimal mechanisms fails to extend
to utility-maximization for risk-averse sellers, and establish
interesting properties of regular distributions and monotone
hazard rate distributions.
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ences—Economics
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1. INTRODUCTION
Auction theory (cf. [12, 1]) typically seeks to optimize

the seller’s expected revenue, which presumes that the seller
is risk-neutral. The focus of this work is to identify good
auction mechanisms for sellers who care about the riskiness
of the revenue in addition to the magnitude of the revenue1.

There is an inherent trade-off between the magnitude and
riskiness of revenue. Consider the auction of a single-item
to a bidder whose valuation is drawn from the uniform dis-
tribution over the interval [0, 1]. Recall that every truthful
single-bidder mechanism offers the bidder a take-it-or-leave-
it price. If the seller is risk-neutral and cares about mean
revenue, we must select a price p that maximizes the prod-
uct of the price p times the probability of sale 1 − p. The
price p = 1/2 is optimal here, achieving a mean revenue of
1/4, but it yields zero revenue with probability 1/2. Prices
lower than 1/2 reduce the expected revenue, but increase
the certainty with which positive revenue is obtained.

A systematic and standard (cf. Stiglitz and Rothschild [15])
way to express a bidder’s trade-off between the magnitude
and riskiness of revenue is to endow the seller with a concave
utility function u : [0,∞) → [0,∞) and seek to maximize
the seller’s expected utility. We will assume throughout that
this utility function is monotone and normalized in the sense
that u(0) = 0. Let Rev(M,v) denote the revenue of mecha-
nism M for the bid-profile v, then the expected utility of M
w.r.t. a utility function u is Ev[u(Rev(M,v))]. The concav-
ity of the utility function models risk-aversion. For instance,
the optimal single-bidder mechanism for the utility function
u(x) =

√
x sets a price p = 1/3 and maximizes the expected

utility
√
p · (1 − p). Increasing the concavity of the utility

function increases the emphasis on risk-aversion—the opti-
mal price for the cube-root utility function is p = 1/4. The
linear utility function u(x) = x models a risk-neutral seller.
The goal of this paper is to identify truthful mechanisms
that are simultaneously good for the class of all risk-averse
agents, i.e., we look for mechanisms that yield near-optimal
expected utility for all possible concave utility functions.

A useful byproduct of such a guarantee is that we do not
need to know the seller’s utility function in order to deploy
the mechanism. This is useful when the auctioneer is con-
ducting the auction on behalf of a seller (as in the case of

1We seek ex-post incentive compatible mechanisms. This is
in contrast to the standard Bayesian auction theory litera-
ture (cf. [12, 1]) that studies Bayesian incentive compatible
mechanisms. In our auctions, bidders will therefore maxi-
mize utility by truth-telling, and do not have to deal with
uncertainty or risk; our model of risk applies only to sellers.



eBay), when the seller does not know its utility function pre-
cisely, or when the seller’s risk attitude changes with time.

The following example illustrates the challenge in the con-
text of a single-item single-bidder auction. Consider two sell-
ers with utility functions urisk-neutral(x) = x, which expresses
risk-neutrality, and urisk-averse(x) = min(x, ε) for some very
small ε > 0, which expresses strong risk-aversion. Sup-
pose, as before, that there is a single bidder whose valuation
is drawn from the uniform distribution with support [0, 1].
The unique optimal mechanism for the first utility function
makes a take-it-or-leave-it offer of 1/2. This gives the first
seller a utility of 1/4, and gives the second seller a utility
of ε · (1 − F (1/2)) = ε/2. Lowering the price to ε improves
the second seller’s utility to (1− ε) · ε, but reduces the first
seller’s utility from 1/4 to (1−ε) ·ε. Our challenge in general
is to identify mechanisms that simultaneously appease sellers
with different levels risk-aversion, ranging from risk-neutral
sellers who care about expected revenue to very risk-averse
ones who only care about the certainty with which a positive
revenue is obtained.

1.1 Organization
Section 2 describes our auction model, our distributional

assumptions and formalizes our auction objective. Section 3
describes the difficulty in characterizing our benchmark and
defines a stronger, simpler benchmark. Section 4 identifies
universally approximate posted-price mechanisms for unlim-
ited and limited supply. Section 5 bounds the universal ap-
proximation of the VCG mechanisms for multi-unit auctions
as a function of the ratio of the number of bidders to the
number of items. Section 6 concludes with open directions.

2. PRELIMINARIES

2.1 Auction Model
Our investigation focuses on multi-unit auctions. We adopt

the following standard auction model. There are n unit-
demand bidders 1, 2, . . . , n, and k identical indivisible items
for sale. A bidder i has a private valuation vi for winning
an item, and 0 for losing. A mechanism M = (x,p) first
collects a bid bi from each bidder i, then determines the
winners by the allocation rule x : b → {0, 1}n, i.e., bidder
i wins an item if and only if xi(b) = 1, and finally uses the
payment rule p : b→ [0,∞)n to charge each bidder i a price
pi(b). We will focus our attention on ex post incentive com-
patible, a.k.a., truthful,2 and ex post individual-rational3

mechanisms. Hence we will use the terms bid and valuation
interchangeably. We make the standard assumption that
valuations are drawn i.i.d. from a distribution F . The dis-
tribution F is known to the seller, but the valuations can be
known only to buyers.

2.2 Auction Objective
Let Rev(M,v) denote the revenue of mechanism M for

the input bid-profile v. Then the expected revenue of M
is Ev[u(Rev(M,v))]. Notice that the expectation is over
the bids (or valuations), which is the standard auction ob-
jective in Bayesian revenue maximization. We model the

2For any possible bids b−i of the other bidders, bidder i
always maximizes her utility vi ·xi(b)−pi(bi;b−i), by setting
her bid bi to be her true valuation vi.
3A bidder is never charged more than her bid, and is only
charged when she wins.

risk-attitude of a specific seller by endowing the seller with
a concave utility function u : [0,∞) → [0,∞). We will as-
sume throughout that this utility function is monotone and
normalized in the sense that u(0) = 0. Then the expected
utility of M w.r.t. a utility function u is Ev[u(Rev(M,v))].
As discussed in the introduction, the concavity of the utility
function models risk-aversion.

Recall that the goal of this paper is to identify truth-
ful mechanisms that are simultaneously good for the class
of all risk-averse agents, i.e., we look for mechanisms that
yield near-optimal expected utility for all possible concave
normalized utility functions. More precisely, for each risk-
averse seller, the truthful mechanism M∗u that maximizes
the seller’s expected utility is a benchmark against which
we measure our proposed mechanism (say M)–we quantify
the goodness of this mechanism for this seller by the ap-
proximation ratio U(M)/U(M∗u), where U(X) denotes the
expected utility of mechanism X. The goodness of the mech-
anism is then the worst-case approximation ratio over all
concave utility functions, i.e. ρ = minuU(M)/U(M∗u); in
this case, we will say that the mechanism is a universal ρ-
approximation. For each of the auction settings we consider,
we will try to find a mechanism M that maximizes ρ.

2.3 Distributional Assumptions
For technical convenience, we will assume that the distri-

bution F has a smooth positive density function, and has
non-negative support. We will in addition assume that the
distribution F from which the valuation is drawn satisfies a
standard regularity condition (cf. [12], [1]).

Every distribution function F corresponds to a revenue
function R from domain [0, 1] (or (0, 1] if the support of
F is infinite) to the non-negative reals defined as follows:
for all q, RF (q) = q · F−1(1 − q). (we will drop the sub-
script when it is clear from the context) Note that R(0) = 0
(or R(q) → 0 as q → 0) and R(1) = 0, and we can of-
ten define a distribution F by specifying the corresponding
RF (·) function. We say a distribution F is regular if the
revenue function RF (·) w.r.t. F is strictly concave. This is
also equivalent to the more commonly used definition that
virtual valuation φF (v) = v − 1/h(v) is nondecreasing in

v, where h(v) = f(v)
1−F (v)

is the hazard rate function w.r.t.

F . We say F satisfies the monotone hazard rate condition
(or simply F is m.h.r.), if h(v) is nondecreasing in v. Many
important distributions are regular and m.h.r, including uni-
form, exponential, normal, while other distributions such as
some power-law distributions are regular but not m.h.r. [7].

To justify our use of the regularity assumption, the follow-
ing example shows that no universal constant factor approx-
imation is possible without assumptions on the distribution
F .

Example 1 Recall the utility functions urisk-neutral and urisk-averse

defined in the introduction. Define R as R(0) = R(1) = 0,
R(ε) = 1, R(2ε) = ε, R(1 − ε) = ε, and let R be linear in
all four intervals between these five points; here ’ε’ refers
to the quantity in the definition of urisk-averse (see introduc-
tion). Smoothen R by a negligible amount such that the cor-
responding F function satisfies our smoothness assumption
on distributions. Consider a single bidder whose valuation
function is drawn from F , which is clearly an irregular dis-
tribution.

Thus to achieve a constant fraction of optimal utility for



urisk-neutral means that we have to sell with a probability in the
range of [0, ε], i.e., at a price of at least 1/2, which implies
that we get at most 2ε2 utility for urisk-averse.

2.4 Results and Techniques
We first show that the ’virtual value’ based approach em-

ployed by Myerson [12] for the risk-neutral case extends to
risk-averse single-item auctions, but not (to the best of our
knowledge) to auctions of two or more items (see Section 3).
We then present three results. First, when the supply is un-
limited (or equivalently, the number of items k is equal to
the number of bidders n), we identify a mechanism called
the Hedge mechanism that is a universal 1/2-approximation
(see Theorem 6). The ratio improves to nearly 0.7 with the
assumption that the distribution satisfies a standard haz-
ard rate condition. The Hedge mechanism is a posted-price
mechanism, which offers every bidder a take-it-or-leave-it of-
fer p in a sequential order so long as supply lasts. We choose
the price p to be less than the optimal price for a risk-neutral
seller so as to guarantee a good probability of sale to any bid-
der at a good revenue level. Moreover, this mechanism is the
best possible in the sense that no mechanism can be a univer-
sal ρ-approximation for ρ > 1/2 (see Theorem 8). This im-
possibility result identifies a certain heavy-tailed regular dis-
tribution, called the left-triangle distribution that exhibits
the worst-case trade-off between riskiness and magnitude of
revenue over all regular distributions. Second, when the
supply is limited (number of items k is less than the number
of bidders n), we identify a sequential posted-price mecha-
nism that gives a universal 1/8-approximation by modifying
the Hedge mechanism to handle the supply constraint (see
Theorem 12). The key to this modification is to use a cer-
tain limited supply auction to guide the choice of the posted
price. Third, we will show that the VCG mechanism [17, 3,
9] yields a universal approximation ratio close to 1/4 under
moderate competition, i.e., when n is a reasonable multiple
of k (see Theorem 15). Recall that for a k-item auction the
VCG mechanism is a k + 1-st price auction, in which the
top k bidders win and get charged the k + 1-st highest bid.
We prove our result by establishing a probability bound for
the k + 1-st order statistic of n i.i.d. draws from a regular
distribution.

2.5 Related Work
Myerson [12] identifies the optimal single-item mechanism

for a risk-neutral seller and has inspired a large body of work
(cf. Chapter 13 from [13]).

There is some work that deals with risk in the context
of auctions. Eso [6] identifies an optimal mechanism for a
risk-averse seller, which always provides the same revenue
at every bid vector by modifying Myerson’s optimal mecha-
nism; unfortunately, this mechanism does not satisfy ex-post
(or even ex-interim) individual rationality, and charges bid-
ders even when they lose. Maskin and Riley [11] identifies
the optimal Bayesian-incentive compatible mechanism for a
risk-neutral seller when the bidders are risk-averse. In our
model, we identify mechanisms that are ex-post incentive
compatible. So the buyers optimize their utility bidding
truthfully for every realization of the valuations, and thus
have no uncertainty or risk to deal with. Hu et al. [10] stud-
ies risk-aversion in single-item auctions. Specifically, they
show for both the first and second price mechanisms that
the optimal reserve price reduces as the level of risk-aversion

of the seller increases. In contrast, we identify the optimal
truthful mechanism for a risk-averse seller in a single-item
auction in Section 3 (it happens to be a second price mech-
anism with a reserve), study auctions of two or more items
and identify mechanisms that are simultaneously approxi-
mate for all risk-averse sellers.

An alternative simpler model of risk different from the one
we adopt is to optimize for a trade-off between the mean and
the variance of the auction revenue, i.e., E[R] − t · V ar[R].
However, as Section 2A in Stiglitz and Rothschild [16] shows,
this approach does not capture all the types of behavior
intuitively consistent with risk-aversion, because this ap-
proach restricts the form of seller utility functions. Our
model of risk-aversion is inspired in part by Stiglitz and
Rothschild [15].

There is significant literature on prior-free optimal auc-
tions (see Chapter 13 from [13]). In this framework, the
benchmark (in the unlimited supply case, the revenue from
the optimal price for that bid vector constrained to serve at
least 2 bidders) is defined independently for each bid vector,
and the performance of the mechanism is measured worst-
case over all bid-vectors. In contrast, in our framework, as
in all Bayesian auction theory, the mechanism’s performance
is measured in expectation over the distribution of the bids.
However, we believe that it is worth investigating the risk
properties of the mechanisms proposed in this literature,
which ought to yield universal constant factor approxima-
tions in several auction settings.

Finally, we mention papers that inspire our proof tech-
niques. Chawla et al. [2] proposes posted-price mechanisms,
and it uses Myerson’s mechanism to guide the selection of
the prices. We use a similar idea in Section 4.2. Bulow and
Klemperer [1] shows that the VCG mechanism with k ex-
tra bidders yields better expected revenue than the optimal
mechanism so long as the bidder valuations are drawn i.i.d.
from a regular distribution. Dughmi et al. [5] extends the
result of Bulow and Klemperer [1] to matroid settings, and
introduces the problem of designing markets with good rev-
enue properties. We use ideas from these papers to bound
the performance of the VCG mechanism in Section 5. The
characterization of regular distributions in terms of concave
revenue functions is implicit in Myerson [12], and is used
explicitly in Chawla et al. [2] and Dhangwatnotai et al. [4].

3. ON UTILITY-OPTIMAL MECHANISMS
Recall from the introduction that we would like to design

mechanisms that yield a good approximation of the opti-
mal expected utility for each concave utility function. Our
benchmark for a specific utility function u is the truthful in-
dividually rational mechanism that maximizes the expected
utility w.r.t. u. In this section we focus on getting a handle
on such a mechanism for a fixed utility function u. We show
that the result of Myerson [12] can be extended to identify
the optimal mechanism for the single item case, but not for
auctions of two or more items. For the rest of the paper, we
use the stronger simpler benchmark from Fact 3.

Myerson’s characterization says that the expected revenue
of any truthful mechanism equals the expected total virtual
valuation served by the mechanism. It generates a prescrip-
tion for the allocation and payments of the optimal risk-
neutral truthful mechanism on a specific input bid vector.
In the single-item case, to generalize Myerson’s character-
ization to auctions with risk-averse sellers, we generalize



the notion of virtual valuation to take risk-aversion into ac-
count: given a distribution F and a concave utility function
u, we define the virtual utility function as φu

F (v) = u(v) −
u′(v)/h(v). As in the case of virtual valuations, the virtual
utility φu

F (v) is the derivative d
d(1−F (v))

u(v) (1− F (v)) of the

expected utility from a bid-independent take-it-or-leave-it
offer v to a single bidder. We then have the following:

Lemma 2 In a single-item auction, for any mechanism M =
(x,p) and concave utility function u, the expected utility of
the mechanism, Ev[u(Rev(M,v))], is equal to the expected
virtual valuation served Ev[

∑
i φ

u
F (vi) · xi(v)].

Proof. The expected utility of the mechanism is:

Ev[u(Rev(M,v))] = Ev[u(
∑
i

pi(v))]

=
∑
i

Ev−i [Evi [u(pi(v))]]

=
∑
i

Ev−i [Evi [φ
u
F (vi) · xi(v)]]

= Ev[
∑
i

φu
F (vi) · xi(v)]

Here the second equality holds because we sell to at most 1
bidder. The third equality holds because when v−i is fixed,
the mechanism induces a fixed offer price, say p′, for bidder
i. So Evi [u(pi(v))] = u(p′) (1− F (p′)), which is equal to∫∞
p′ (u(v)− u′(v)/h(v)) f(v)dv, which is Evi [φ

u
F (vi) · xi(v)],

the expected virtual utility we get from bidder i.

We can now use the lemma to show that the optimal mech-
anism for a seller with utility function u is a second price auc-
tion with a reserve price—a mechanism that is well-known
to be truthful. Consider the second price mechanism with
a reserve r∗u, where r∗u solves that φu

F (r∗u) = 0. When the
distribution is regular, the virtual utility function is nonde-
creasing in the valuation (see Lemma 19 in the appendix).
So the above mechanism allocates the item to the bidder
with the highest virtual utility, so long as there is at least
one bidder with non-negative virtual utility. (When the dis-
tribution is not regular, and in particular when the virtual
utility function is not monotone, one can apply the ironing
procedure of Myerson to identify the optimal mechanism
as the one that maximizes the total ironed virtual utility
served.)

In Section 5 we will present another application of the
above characterization that shows that the single-item Vick-
rey auction has good revenue properties. However, this char-
acterization does not extend to auctions where more than
one items are for sale. The first step of the proof of Lemma 2,
which sums the contributions of the bidders independently,
only works because a single-item auction sells to and charges
at most one bidder. When there are more than one items
for sale, that step is still sound if the utility function is lin-
ear (the risk-neutral case), but it does not work for strictly
concave utility functions.

We now identify an upper bound on the expected utility
of utility-optimal mechanism that applies to auction settings
beyond single-item auctions. We will use this upper bound
as a benchmark for analysis. For any mechanism M and
concave utility function u, the expected utility of the mech-
anism Ev[u(Rev(M,v))] is upper-bounded by the utility
function applied to the expected revenue u(Ev[Rev(M,v)])

by Jensen’s inequality, which is then upper-bounded by the
utility function applied to the expected revenue of Myerson’s
revenue-optimal mechanism Mye, u(Ev[Rev(Mye,v)]), be-
cause a utility function is monotone. So we have the follow-
ing:

Fact 3 For any mechanism M4, and any concave utility
function u, the expected utility of M is upper-bounded by the
utility function applied to the expected revenue of Myerson’s
mechanism, i.e., Ev[u(Rev(M,v))] ≤ u(Ev[Rev(Mye,v)]).

4. UNIVERSALLY APPROXIMATE SEQUEN-
TIAL POSTED-PRICE MECHANISMS

In this section we propose sequential posted-price mecha-
nisms (or SPM in short) for multi-unit auctions. In an SPM,
a take-it-or-leave-it price is offered to each bidder one by one
in arbitrary order, as long as supply lasts. An obvious ad-
vantage of such mechanisms is that they can be applied to
both offline and online settings and are collusion-resistant in
the sense of Goldberg and Hartline [8].

4.1 The Unlimited Supply Case
Fix a regular distribution F from which the valuations are

drawn i.i.d. We now identify an SPM that offers every bid-
der the same take-it-or-leave-it offer p, and show that this
mechanism is universally 1/2-approximate for all regular dis-
tributions, and 0.69-approximate for all m.h.r. distributions.
Let p∗ is the optimal price that maximizes p(1−F (p)), and
q∗ = 1 − F (p). Setting the offer price p to be p∗ yields
the optimal expected revenue, but the probability of sale for
each bidder can be very low. Intriguingly, we find that re-
ducing the offer price to p∗q∗ is optimal, i.e., the discount
factor is precisely the probability of sale at the optimal price
for a risk-neutral seller in a single item-single bidder auc-
tion. We call this SPM with posted price p = p∗ the Hedge
Mechanism. Theorem 6 shows that this achieves a univer-
sal 1/2 approximation for regular distributions (universal
0.69-approximation for m.h.r. distributions), and Theorem 8
shows that we cannot do better.

To analyze the performance of the Hedge mechanism, the
following property of regular distributions is crucial.

Lemma 4 For all regular distribution F , we have 1−F (p∗q∗) ≥
1/2.

Proof. Let q = 1 − F (p∗q∗). Note that q ≥ q∗ because
p∗q∗ ≤ p∗. Let R(·) be F ’s revenue function, which is con-
cave by regularity. The fact that q ≥ 1/2 follows from the
following inequalities:

4We shall only work with deterministic mechanisms, but in
fact we can allow the mechanism here to be randomized.



q = R(q)/(p∗q∗)

≥
(
R(q∗)

1− q
1− q∗ +R(1)

q − q∗

1− q∗

)
/(p∗q∗)

≥
(

(p∗q∗)
1− q
1− q∗

)
/(p∗q∗)

=
1− q
1− q∗

≥ 1− q

The first step is by the definition of q. The second step
is by the concavity of R. (In the above figure, note that
(q,R(q)) is above the line segment connecting (q∗, R(q∗))
and (1, R(1))). The third step is because R(q∗) = p∗q∗ and
R(1) is non-negative.

When the distribution F is further assumed to be m.h.r.,
we can improve the constant to e−1/e.

Lemma 5 For any m.h.r. distribution F , let p∗ maximize
p(1 − F (p)) and q∗ = 1 − F (p∗). Then we have that 1 −
F (p∗q∗) ≥ e−1/e ≈ 0.6922.

Proof. W.l.o.g., we can let p∗ = 1 by scaling the valu-
ation space. Let cumulative hazard rate function H(x) be∫ x

0
h(t)dt, and note that the monotone hazard rate condi-

tion implies that H(x) is monotone, convex, and normalized
(H(0) = 0). Note that at the price p∗ = 1, the virtual valua-
tion is 0, i.e., 1−1/h(1) = 0. So h(1) = 1. Further, the func-

tion h is nondecreasing. So H(1) =
∫ 1

0
h(t)dt ≤ 1 · h(1) = 1.

Our claim follows from the following inequalities:

q = 1− F (p∗q∗)

= 1− F (q∗)

= e−H(q∗)

= e−H(1−F (p∗))

= e−H(e−H(p∗))

= e−H(e−H(1))

≥ e−H(1)e−H(1)

≥ e−1/e

The first step is by definition of q and R(q). The second and
sixth steps are because p∗ = 1. The third and fifth steps are
because the distribution function can be written in terms of
the cumulative hazard rate function: F (x) = 1 − e−H(x).

The seventh step is because H(e−H(1)) ≤ e−H(1)H(1) by
the convexity of H and that H(1) ≤ 1. The last step holds
because e−x · x is at most 1/e for x ∈ [0, 1].

We now use the bounds in the previous two lemmas to
complete the proof of the theorem.

Theorem 6 In a multi-unit auction with unlimited supply,
where bidders’ valuations are drawn i.i.d. from a regular (or
m.h.r) distribution F , the Hedge mechanism is a universal

0.5 (or e−1/e ≈ 0.6922)-approximation.

Proof. We prove for the regular case; for the proof of the
m.h.r. case we simply use the bound from Lemma 5 instead
of the bound from Lemma 4. Fix a concave utility function

u. For each bidder i, let 0-1 random variable Xi indicate
whether bidder i’s bid is at least p∗q∗.

Expected Utility of Hedge = E[u(
∑
i

Xi · p∗q∗)]

≥ E[

∑
iXi

n
] · u(np∗q∗)

≥ 0.5 · u(np∗q∗)

≥ 0.5 ·Optimal Expected Utility

The first step is because the sale price is p∗q∗. The sec-
ond step is by monotonicity and concavity of u and because
0 ≤

∑
iXi · p∗q∗ ≤ np∗q∗. The third step is by Lemma 4,

and hence E[
∑

iXi] ≥ n/2. Applying Fact 3 completes the
proof.

Remark 7 If bidders’ valuations are drawn from non-identical
but independent regular distributions, we can identify dis-
tinct offer prices for each bidder i, p∗i · q∗i , (here p∗i is the
price that maximizes the expected revenue in a single bidder-
single item auction with bidder i; and q∗i is the sale proba-
bility at that price), such that the guarantee in Theorem 6
holds.

The following lemma shows that the ratios in Theorem 6
cannot be improved. The proof identifies a certain left-
triangle distribution that exhibits worst-case behavior over
regular distributions, and shows that the exponential dis-
tribution exhibits worst-case behavior over all m.h.r. distri-
butions. The proof elucidates why the price p∗q∗ is critical
for the single-bidder case and justifies its use in the Hedge
mechanism.

Theorem 8 There exists a regular (or m.h.r) distribution
such that no mechanism yields a universal approximation
with ratio larger than than 1/2 (or e−1/e ≈ 0.6922) for a
single-bidder single-item auction, respectively.

Proof. Consider a single-item single-bidder auction. Con-
sider two possible seller utility functions, urisk-neutral and
urisk-averse, as defined in the introduction. The optimal util-
ity w.r.t. urisk-neutral is p∗q∗, achieved at price p∗, and the
optimal utility w.r.t. urisk-averse is roughly ε (as ε → 0),
achieved at price ε.

We argue that the sale probability q = 1 − F (p∗q∗) at
the price p∗q∗ is an upper-bound on the best universal ap-
proximation possible. The expected revenue at price p∗q∗ is
qp∗q∗. So, the approximation ratio for the risk-neutral seller
is precisely q. The expected utility for the risk-averse seller
at price p∗q∗ is roughly εq. So, the approximation ratio for
this seller is also q. Now suppose a price lower than p∗q∗

is offered. Then the expected revenue deteriorates, and the
approximation ratio for the risk-neutral seller drops below
q. On the other hand, suppose a price higher than p∗q∗ is
offered. Then the sale probability drops below q, and so
does the approximation ratio for the risk-averse seller.

Then it suffices to show that there is regular distribution
with sale probability 1/2 at price p∗q∗, and there is an m.h.r.

distribution with sale probability e−1/e at price p∗q∗. First
we define the left-triangle distribution via its revenue func-
tion RL(·) as follows. Let RL(0) = RL(1) = 0, RL(ε) = 1
for some small ε > 0, and let RL(q) be piecewise linear be-
tween these points, and smoothen it by a negligible amount



to make sure that the corresponding F is a valid distribu-
tion. (It is essentially a shifted Pareto distribution.) So p∗q∗

is 1, and clearly the sale probability at price 1 is roughly 1/2.
Second, consider the exponential distribution F (p) = 1−

e−p, which satisfies the monotone hazard rate condition.
Note that p∗ = 1 and q∗ = 1/e, and it follows that 1 −
F (p∗q∗) = e−1/e.

Remark 9 Our bounds in Theorem 8 and Theorem 6 are
worst-case over the number of bidders n, and the mecha-
nism we propose does not require knowledge of n. In gen-
eral, the knowledge of n is useful: As n increases it makes
sense to increase the price from the heavily discounted price
p∗q∗ towards the optimal risk-neutral price p∗, because for
large n, the resulting revenue as a random variable is well
concentrated.

4.2 The Limited Supply Case
In this section we identify an SPM that yields a universal

1/8-approximation for limited supply auctions. In this case,
we have k items to sell, where k can be less than the num-
ber of bidders n, and this allocation constraint imposes an
additional challenge: using the posted price identified in the
previous section will cause us to hit the supply constraint
without having collected enough revenue. To define the price
to use in our posted-price mechanism in this context, we ap-
ply a trick introduced in [2] as follows. Given a mechanism
that honors the supply constraint, for a fixed bidder, define
the allocation probability q to be the probability that she
wins in running this mechanism, where the randomization
is over all valuation profiles. As the valuations are identi-
cally distributed, q is identical for all bidders. The posted
price to use is then p = F−1(1−q). The key for us is then to
find the right mechanism to draw the allocation probability
from. Recall that the optimal risk-neutral mechanism is the
VCG mechanism with reserve p∗. In order to have better
control over the distribution of the revenue of the mecha-
nism, we derive the allocation probability from the VCG
mechanism with a discounted reserve p∗q∗. By Lemma 4,
at least half of the bidders meet the reserve in expectation,
and as we will show it follows that the allocation probability
q is bounded between k

2n
and k

n
. Moreover, the loss in ex-

pected revenue due to this sub-optimal reserve is bounded.
We formalize these in the following two claims.

Lemma 10 Rev(V CGr=p∗q∗) ≥ 0.5 ·Rev(V CGp∗).

Proof. For notational convenience, let R̂(p) = p(1 −
F (p)). Fix a bidder i, fix the bids b−i of the other bid-
ders, and let t be the threshold induced by the V CG mech-
anism (with no reserve) for bidder i. Then the threshold
bids of bidder i in V CGp∗ and V CGr (with r = p∗q∗) are
max{t, p∗} and max{t, r} respectively. It suffices to show
that the expected revenue of bidder i in V CGr, which is
R̂(max{t, r}), is at least half of that in V CGp∗ , which is

R̂(max{t, p∗}), and our claim follows by integrating over all
b−i and i.

There are two cases. If t ≥ p∗, then t ≥ p∗q∗ = r, and
so the offered prices and the expected revenues from the
two auctions are identical. Otherwise, t < p∗, so bidder i is
offered p∗ (with revenue p∗q∗) by V CGp∗ , and a price in the
interval [p∗q∗, p∗] by V CGr. As revenue is monotonically
decreasing as price goes down from p∗ to 0, the revenue

of V CGr is minimized when the offer price is p∗q∗. By
Lemma 4 the resulting revenue p∗q∗ (1− F (p∗q∗)) is at least
p∗q∗

2
; integrating over all b−i and i completes the proof.

Lemma 11 Let q be the allocation probability of any fixed
bidder. Then q lies in the interval [ k

2n
, k
n

].

Proof. Let X be the number of bidders with bids at least
r. The expected number of winners of V CGr is min(k,X).
By definition of q, qn is the expected number of winners in
V CGr. So, qn = E[min(k,X)] and hence, q ≤ k/n.

By definition of r, each bidder’s bid is at least r with
probability at least 0.5, and so, E[X] ≥ 0.5n. Therefore
qn = E[min(k,X)] ≥ E[ k

n
·X] = k

n
0.5n = 0.5k.

Now we can define our Hedge mechanism (for the limited-
supply case). The hedge mechanism is an SPM which makes
a take-it-or-leave-it offer at price p = F−1(1− q) to bidders
one by one, as long as the supply lasts.

Theorem 12 In a multi-unit auction with k items and n
bidders, where bidders’ valuations are drawn i.i.d. from a
regular distribution F , the Hedge mechanism is a universal
1/8-approximation to optimal expected utility.

Notice that the revenue of Hedge is p · min(Y, k), where
Y is the number of bidders who bid at least p, which is
a binomial variable with parameter (n, q). Hence E[Y ] =
qn ≥ 0.5k. Crucial to our analysis is the following property
about “capped” binomial variables:

Lemma 13 Let Y be a binomial random variable with pa-
rameter (n, q) where qn ≥ 0.5k for some positive integer k,
then E[min(Y, qn)] ≥ 0.25 · qn.

Proof. Clearly E[Y ] = qn ≥ 0.5k.
First let k = 1, and hence 0.5 ≤ qn ≤ 1. Note that

E[min(Y, qn)]/qn = Pr[Y > 0] = 1 − (1 − q)n, which is at
least 1− (1− 0.5/n)n ≥ 1− e−0.5 > 0.25.

Next let k > 1, and hence qn ≥ 0.5k ≥ 1. By a result of
[14], one of dqne, bqnc is the median of Y , and hence Pr[Y ≥
bqnc] ≥ 0.5. It follows that E[min(Y, qn)] ≥ Pr[Y ≥ bqnc] ·
bqnc ≥ 0.5 · bqnc ≥ 0.25qn, and our claim follows.

We now complete the proof of Theorem 12.

Proof. (of Theorem 12) The expected utility of Hedge:

Ev[u(p ·min(Y, k))] ≥ Ev[u(p ·min(Y, qn))]

≥ Ev[u(pqn) · min(Y, qn)

qn
]

≥ 1/4 · u(pqn)

≥ 1/4 · u(Rev(V CGr))

≥ 1/8 · u(Rev(V CGp∗))

≥ 1/8 ·Optimal Expected Utility

The second step is by concavity of u, the fourth step is
by monotonicity of the utility function with the following
additional justification. For any bidder i, she wins with
probability q in V CGr. On the other hand, the optimal
way to maximize expected revenue subject to the constraint



that she wins with probability q is to set a single price p and
get expected revenue qp. The fifth step is by Lemma 10.
Applying Fact 3 completes the proof.

We do not have an analog of Theorem 8 for the lim-
ited supply case. We do not know if our analysis is tight
(though we can tweak various parameters to improve the
ratio slightly) or if it possible to identify a better posted-
price mechanism.

5. THE VCG MECHANISM
In this section, we quantify the universal approximation

ratio of the VCG mechanism in multi-unit auctions. This
is useful because the VCG mechanism (k + 1-st price auc-
tion) or a variation of it with a reserve price is often used in
practice.

5.1 The Single-Item Case
We first restrict our attention to single-item auctions. The

main result of this subsection is that the Vickrey mechanism
is a universal (1 − 1/n)-approximation when there are n
bidders.

Theorem 14 For a single item auction with n bidders, when
valuations are drawn i.i.d. from a regular distribution F , the
Vickrey mechanism is a universal (1 − 1/n)-approximation
to optimal expected utility.

This theorem is a generalization of a result of Dughmi et
al. [5], which was for the risk-neutral case. Most of the proof
steps are similar, and so we only mention the proof structure,
which is also used in the next section. Let OPT ′ be the
mechanism which first runs the utility-optimal mechanism
OPT on the n − 1 bidders, and then allocates the item for
free to the other bidder in case it is still available. Our
theorem follows from three statements. First, the revenue
(and hence utility) of OPT ′ on n bidders is equal to that of
OPT on n− 1 bidders. Second, among all mechanisms that
always sell the item, including Vickrey and OPT ′, Vickrey
maximizes the winner’s valuation and hence virtual utility,
and therefore by the characterization of Lemma 2, Vickrey
on n bidders has a higher expected utility than that of OPT ′

on n−1 bidders. Third, as we will show more more generally
in Lemma 18, the optimal expected utility from n−1 bidders
is at least 1 − 1/n fraction of that from n bidders. These
three statements altogether imply our theorem.

5.2 The Multi-Unit Case
In this section we prove a result analogous to Theorem 14

for multi-unit auctions.

Theorem 15 In a multi-unit auction with k items and n
bidders, where bidders’ valuations are drawn i.i.d. from a
regular distribution F , the VCG mechanism is a universal
(n− k)/4n-approximation to optimal expected utility.

The result implies that as long as the number of bidders
is a small multiple of the number of items, the universal
approximation ratio of VCG mechanism is close to 1/4. The
proof structure is similar to that of Theorem 14, but the
details are different because Lemma 2 does not extend to
the multi-unit case (as discussed in Section 3). Recall that
the revenue of the VCG mechanism is exactly k times the

k+ 1-st highest bid (let the n+ 1-th highest bid be 0). The
following probability bound on the k + 1-st highest bid is
crucial to our analysis.

Lemma 16 For any regular distribution F , and 1 < t ≤ n,
let Y be the t-th largest of n i.i.d. random draws from F ,
then Pr[Y ≥ E[Y ]] ≥ 1/4.

Proof. Our proof consists of two steps. First, given a
regular distribution F , we construct a slightly non-regular
distribution F̃ such that Pr[Y ≥ E[Y ]] ≥ Pr[Ỹ ≥ E[Ỹ ]],

where Ỹ is the t-th largest valuation of n i.i.d. draws from F̃ .
This new distribution F̃ has corresponding revenue function
R̃(q) = a · q + b for q ∈ (0, 1] for some b > 0 and a+ b ≥ 0,

and it then suffices to show that Pr[Ỹ ≥ E[Ỹ ]] ≥ 1/4 for
such distributions.

Given any regular distribution F , let z = 1 − F (E[Y ]),

and consider the distribution F̃ corresponding to the revenue
function R̃ such that R̃(z) = R(z) and R̃′(q) = R′(z) for all

q ∈ (0, 1]. In other words, R̃ is the line segment that is

tangent with R at z. By concavity of R, we have R̃(q) ≥
R(q) for all q ∈ (0, 1].

To aid the analysis, let Qt,n be the t-th order statistics
(i.e., the t-th smallest valuation) of n i.i.d. draws from the
uniform distribution over [0, 1]. Therefore for all y, Pr[Y ≥
y] = Pr[Qt,n ≤ 1−F (y)] and similarly for Ỹ and F̃ . Let z̃ =

1 − F̃ (E[Ỹ ]). Then to show that Pr[Y ≥ E[Y ]] ≥ Pr[Ỹ ≥
E[Ỹ ]], it suffices to show that Pr[Qt,n ≤ z̃] ≤ Pr[Qt,n ≤ z],
or simply that z̃ ≤ z.

Recall that R̃(q) ≥ R(q) for all q. Therefore F̃ (v) ≤ F (v)

for all v, and hence E[Ỹ ] ≥ E[Y ]. Also recall that R̃(z) =

R(z). Therefore F̃−1(1−z) = F−1(1−z) = E[Y ] ≤ E[Ỹ ] =

F̃−1(1− z̃). So z̃ ≤ z.
Now we prove that Pr[Ỹ ≥ E[Ỹ ]] ≥ 1/4. Let distribution

F̃ be such that the corresponding revenue function is R̃(q) =
a · q + b for some b ≥ 0 and a + b ≥ 0. Let ft,n(q) =

n!
(t−1)!(n−t)!

qt−1(1 − q)n−t be the density function of Qt,n.

Then

E[Ỹ ] =

∫ 1

q=0

ft,n(q) · R̃(q)

q
dq

=

∫ 1

q=0

ft,n(q) · (a+
b

q
)dq

= a+ b · n

t− 1
,

where we use the facts that 1
q
·ft,n(q) = n

t−1
·ft−1,n−1(q) and

that ft,n and ft−1,n−1 as density functions both integrate to
1. Note that when q = t−1

n
, R̃(q)/q = a + b/q = E[Ỹ ].

Therefore 1 − F̃ (E[Ỹ ]) = t−1
n

, and hence Pr[Ỹ ≥ E[Ỹ ]] =

Pr[Qt,n ≤ t−1
n

].
Note that for n i.i.d. draws from the uniform distribution

over [0, 1], the t-th order statistic is at most t−1
n

if and only

if the number of draws that are at most t−1
n

is at least t.
Let B be this number, which is a binomial variable with
parameter n and t−1

n
. Then Pr[Qt,n ≤ t−1

n
] = Pr[B ≥ t],

and by properties of binomial distribution, Pr[B ≥ t] is at
least 1/4, where 1/4 is achieved when t = n = 2.



Based on Lemma 16, we can prove the following risk-
averse version of the classical result of Bulow and Klemperer
[1]. (We suspect that an exact version holds without the ap-
proximation factor 1/4; to recover the statement original
result, replace ‘utility’ by ‘revenue’ and remove the ‘1/4’.)

Lemma 17 Suppose valuations of bidders are drawn i.i.d.
from a regular distribution. The optimal expected utility
when selling k items to n bidders is at most 1/4 times the
expected utility of the VCG mechanism when selling k items
to n+ k bidders.

Proof. We will let superscripts in V CGk,n or Myek,n

denote that we are selling k items to n bidders. By Fact
3, the optimal expected utility of selling k items to n bid-
ders is at most u(Ev[Rev(Myek,n,v)]), which by the clas-
sic Bulow-Klemperer result [1] and the monotonicity of u is
at most u(Ev[Rev(V CGk,n+k,v)]). Note that the revenue
of V CGk,n+k is k times Y = F−1(1 − Qk+1,n+k), where
Qk+1,n+k is the k+ 1-th order statistics of n+ k i.i.d. draws
from a uniform distribution over [0, 1]. By Lemma 16, we
have Pr[Y ≥ E[Y ]] ≥ 1/4. Our lemma follows because the
utility of V CGk,n+k would be at least 1/4 · u(k · E[Y ]) =
1/4 · u(Ev[Rev(V CGk,n+k,v)]).

The following claim bounds the loss of optimal utility in
dropping k bidders.

Lemma 18 Suppose valuations of bidders are drawn i.i.d.
from a regular distribution. The optimal expected utility
when selling k items to n − k bidders is at least 1 − k/n
fraction of the optimal expected utility when selling k bid-
ders to n bidders.

Proof. Let M be a utility-optimal mechanism for selling
k items to n bidders N = {1, 2, . . . , n}. For any subset S of
bidders, let random variable RS be the revenue we collect
from S in M . Then the expected utility of running M on
all bidders is Ev[u(RN )]. Suppose we randomly select a set
S of size n− k. Then we have:

Ev,S [u(RS)]

≥ Ev[ES [u(RN ) · RS

RN
]]

= Ev[u(RN ) · ES [
RS

RN
]]

= (1− k

n
) · Ev[u(RN )]

Here the inequality is by the concavity of u and that RS ≤
RN , and the second equality is due to the fact that every
bidder’s revenue is accounted in RS with probability 1−k/n.
By an averaging argument, for some set S of n− k bidders,
and for some fixed bids v−S of bidders outside of S, the
mechanism M induced on S has expected utility that is at
least 1−k/n fraction of the expected utility of running M on
all bidders. Our lemma follows because the utility-optimal
mechanism on n − k bidders can only do better than this
induced mechanism.

Now Theorem 15 follows by chaining the inequalities from
Lemma 17 and Claim 18.

6. CONCLUSIONS AND OPEN PROBLEMS
In this paper, we identify truthful mechanisms for multi-

unit auctions that offer universal constant-factor approxima-
tions for all risk-averse sellers, no matter what their levels of
risk-aversion are. We hope that this paper spurs interest in
the design and analysis of mechanisms for risk-averse sellers.

We see several open directions. For instance, identifying
better mechanisms for the auction settings studied in this
paper, identifying mechanisms for more combinatorial auc-
tion settings, and designing online mechanisms that adapt
prices based on previous sales. We conclude by singling out
a specific challenge: can we characterize the utility-optimal
mechanism for a seller with a fixed known utility function?
What if the seller’s utility function has additional structure–
for instance, it satisfies constant (absolute or relative) risk
aversion? (Section 3 discusses how the standard approach
from Myerson [12] does not work for multi-item auctions.)
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APPENDIX
A. MISSING PROOFS

A.1 Proof of Lemma 19

Lemma 19 Let F be a regular distribution. For any con-
cave utility function u, φu

F (v) is nondecreasing.

Proof. Since F is regular, φu
F (v) = (v − 1

h(v)
)′ = 1 +

h′(v)
h2(v)

≥ 0. Then:

dφu
F (v)

dv
= (u(v)− u′(v)

h(v)
)′ (A.1)

= u′(v)− u′′(v)h(v)− u′(v)h′(v)

h2(v)
(A.2)

= u′(v) · (1 +
h′(v)

h2(v)
)− u′′(v)

h(v)
(A.3)

= u′(v) · φu
F (v)− u′′(v)

h(v)
(A.4)

≥ 0 (A.5)


