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ABSTRACT
We design and analyze approximately revenue-maximizing
auctions in general single-parameter settings. Bidders have
publicly observable attributes, and we assume that the val-
uations of indistinguishable bidders are independent draws
from a common distribution. Crucially, we assume all valua-
tion distributions are a priori unknown to the seller. Despite
this handicap, we show how to obtain approximately opti-
mal expected revenue — nearly as large as what could be
obtained if the distributions were known in advance — under
quite general conditions.

Our most general result concerns arbitrary downward-
closed single-parameter environments and valuation distri-
butions that satisfy a standard hazard rate condition. We
also assume that no bidder has a unique attribute value,
which is obviously necessary with unknown and attribute-
dependent valuation distributions. Here, we give an auction
that, for every such environment and unknown valuation
distributions, has expected revenue at least a constant frac-
tion of the expected optimal welfare (and hence revenue). A
key idea in our auction is to associate each bidder with an-
other that has the same attribute, with the second bidder’s
valuation acting as a random reserve price for the first. Con-
ceptually, our analysis shows that even a single sample from
a distribution — the second bidder’s valuation — is suffi-
cient information to obtain near-optimal expected revenue,
even in quite general settings.
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1. INTRODUCTION
Worst-Case Revenue Maximization.

Revenue guarantees for auctions are an important but elu-
sive goal. A key challenge, first identified by Goldberg et
al. [6], is to develop a useful competitive analysis frame-
work. The obvious approach, familiar from e.g. online al-
gorithms, is to define the “optimal” revenue as that achiev-
able by an all-knowing adversary — an entity who, unlike
the auctioneer, knows all of the bidders’ private information
(like valuations) a priori. Such an opponent turns out to
be simply too powerful: even in very simple problems, no
incentive-compatible auction can obtain more than a van-
ishingly small fraction of its revenue in the worst case.

A successful competitive analysis framework must, obvi-
ously, differentiate between intuitively “better” auctions and
“worse” ones. Goldberg et al. [6] proposed a revenue bench-
mark approach, which has been applied successfully to a
number of auction settings (see [8] for a survey). The idea is
to define a real-valued function on inputs (i.e., bid vectors)
that represents an upper bound on the maximum revenue
achievable by any “reasonable” auction on each input. Such
benchmarks are generally smaller than the revenue achiev-
able by an all-knowing seller, opening up the possibility
of non-trivial (but still well motivated) worst-case revenue
guarantees. The best known such benchmark is F2 for digi-
tal goods (i.e., unlimited supply and unit-demand) auctions,
which for a given set of bids is defined as the maximum rev-
enue achievable using a common selling price and selling to
at least two bidders [6].

Researchers have successively designed novel auctions that
are competitive with benchmarks like F2 — i.e., auctions
that obtain at least a constant fraction of the benchmark
revenue on every possible input — for several auction set-
tings (see [8]). Thus far, however, most constant-factor
approximations in the revenue benchmark framework have
been confined to simple auction settings, where the goods
are in unlimited supply and/or the bidders are symmetric.
For example, no worst-case revenue guarantees of any sort
are known for the central problem of combinatorial auctions
with (known) single-minded bidders.1

1In such an auction, there are n bidders and m goods with



In the classical auction literature, these issues are skirted
by assuming that the seller knows, a priori, a distribution
over the private information of the bidders. Assuming such a
distribution over inputs obviates the need for a competitive
analysis framework: since the performance of every auction
can be summarized by a single number — its expected rev-
enue with respect to the assumed distribution over inputs
— there is an auction that is unequivocally optimal. For ex-
ample, Myerson [16] characterizes the optimal auctions for
every single-parameter setting (including, e.g., combinato-
rial auctions with single-minded bidders) and every product
distribution over the bidders’ parameters. The obvious crit-
icisms of this approach are that: (1) private information is
assumed to come from a distribution; (2) the precise distri-
bution is assumed to be known to the seller. Of particular
concern are auction design results that depend on the de-
tails of the assumed distribution, as then modest uncertainty
about the distribution translates to significant uncertainty
about what auction to use. The natural goal of “detail-free”
auctions, whose structure is largely independent of the de-
tails of the distribution, is well known in economics and is
often called “Wilson’s Doctrine” [20].

Our approach.
We propose an analysis framework that combines the ad-

vantages of both the revenue benchmark approach (detail-
free auctions and robust approximation guarantees) and the
classical economics approach (results for general single-parameter
problems). The framework is natural: we consider environ-
ments in which private information is drawn from a distri-
bution (retaining assumption (1), above) but in which this
distribution is a priori unknown to the seller (discarding as-
sumption (2)).

The goal is to design a single auction such that, what-
ever the underlying distribution, its expected revenue is
almost as large as that of an optimal auction tailored
for that distribution.

Our Results.
Our primary contribution is the Single Sample mecha-

nism, and a proof that it simultaneously approximates all
Bayesian-optimal mechanisms for all valuation distributions
under reasonably general assumptions. In more detail, we
consider binary single-parameter environments, where the
feasible outcomes are described by a collection of bidder
subsets. For example, in combinatorial auctions with single-
minded bidders, feasible subsets correspond to bidders seek-
ing mutually disjoint bundles of goods. Each bidder has a
private valuation for belonging to the chosen feasible set.
Bidders can be asymmetric, in that each bidder has an ob-
servable attribute, and we assume that the valuations of
bidders with a common attribute are drawn i.i.d. from an
(unknown) distribution that satisfies standard technical con-
ditions (see Section 2). Bidders with different attributes can
have valuations drawn (independently) from completely dif-
ferent distributions. For example, based on (publicly ob-
servable) eBay bidding history, one might classify bidders
into “bargain-hunters”, “typical”, and “aggressive”, with the
expectation that bidders in the same class are likely to bid

only one unit of each. Each bidder i wants a particular
subset Si of goods (e.g., a set of geographically clustered
wireless spectrum licenses) and has a valuation vi for it.
The seller knows the set Si a priori but not the valuation.

similarly (without necessarily knowing what their valuations
for a given item might be). Simple and standard examples
imply that non-trivial simultaneous approximation guaran-
tees with unknown distributions are possible only when the
environment is non-singular, meaning that there is no bidder
with a unique attribute (see e.g. [6]).

Precisely, our most general result is a mechanism that,
for every non-singular downward-closed environment and
attribute-dependent valuation distributions that satisfy a
standard hazard rate condition, has expected revenue at
least a constant fraction of the expected optimal welfare
(and hence revenue) in that environment. This gives, as an
example special case, the first revenue guarantee for combi-
natorial auctions with single-minded bidders outside of the
standard Bayesian setup with known distributions [11, 13].
We prove an approximation guarantee of 1

4
· κ−1
κ

when there
are at least κ ≥ 2 bidders with each attribute, and our analy-
sis of our mechanism is tight (for a worst-case distribution)
for each κ. This approximation bound depends on solv-
ing the underlying welfare-maximization problem exactly —
which is NP -hard in some contexts — but our design and
analysis techniques easily extend to approximate welfare-
maximization algorithms.

Second, we prove better approximation bounds for i.i.d.
matroid environments, where all bidders have the same at-
tribute and the feasible subsets form a matroid on the set
of bidders. Examples of such environments include k-unit
auctions and certain matching markets. Here, we prove an
approximation factor of 1

2
relative to the expected revenue

of an optimal mechanism, for every κ ≥ 2. Moreover, in
this result we only require that the valuation distribution
is “regular”, a condition that is weaker than the hazard rate
condition above and permits distributions with heavier tails.

Third, we provide better approximation guarantees when
κ is large. Specifically, for every ε > 0, when κ = Ω(poly(ε−1)),
we show how to achieve a (1 − ε)-approximation of the op-
timal expected revenue in every i.i.d. matroid environment
and a (1−ε) 1

e
-approximation of the optimal expected welfare

in every downward-closed environment, under the same dis-
tributional assumptions as above. (Here e denotes 2.718 . . ..)
Our lower bound on κ depends only on the approximation
parameter ε and not on the underlying valuation distribu-
tions.

The Main Ideas.
A key idea in our Single Sample mechanism is to asso-

ciate each bidder with another that has the same attribute,
with the second bidder’s valuation acting as a random re-
serve price for the first. Conceptually, our analysis shows
that even a single sample from a distribution — the second
bidder’s valuation — is sufficient information to obtain near-
optimal expected revenue, even in quite general settings.

For a single-item auction, the Bulow-Klemperer theorem2

furnishes good intuition for why a random reserve price
might be an effective surrogate for an optimal one. It is not
at all obvious, however, that this intuition should extend to
more complex problems in which the bidders are not inter-
changeable — that a “local” guarantee for a single bidder

2The Bulow-Klemperer theorem [3] states: for every n ≥ 1
and valuation distribution F that is regular in the sense
of Section 2, the expected revenue of the Vickrey auction
with n + 1 bidders with valuations drawn i.i.d. from F is
at least that of a revenue-maximizing auction with n such
bidders.



should automatically extend to a “global” guarantee about
the expected revenue of an entire allocation computed using
a collection of random reserves. In fact, this “local to global”
translation does not hold in arbitrary downward-closed en-
vironments with regular valuations distributions: our Single
Sample mechanism does not always give a constant-factor
approximation in such settings. Our proofs implement this
“local to global” approach by making careful use of addi-
tional problem structure, either in the feasible sets or in the
valuation distributions.

Our final result gives an asymptotically optimal revenue
guarantee as the number of bidders of every attribute tends
to infinity, A weak version of this result, which does not give
quantitative bounds on the number of bidders required, can
be derived from the Law of Large Numbers. To prove our
distribution-independent polynomial bound on the number
of bidders needed, we show that there exists a set of “quan-
tiles”that is simultaneously small enough that concentration
bounds can be usefully applied, and rich enough to guaran-
tee a good approximation for every regular valuation dis-
tribution. Our approximation bound relies on a geometric
characterization of regular distributions.

Further Related Work.
Previous works that can be interpreted as simultaneous

approximation for multiple distributions include Segal [19]
and Neeman [17] (who consider asymptotic optimality for
symmetric bidders and identical goods), and the result of
Bulow and Klemperer [3] mentioned above. Hartline and
Roughgarden [11] extended the Bulow-Klemperer result (with
a small approximation loss and slightly stronger technical
conditions) to general single-parameter settings.

Approximation in the revenue benchmark framework dis-
cussed in the introduction is strictly stronger than the si-
multaneous approximation goal pursued in the present pa-
per; this fact is made explicit in [10] and is pursued fur-
ther in [4, 11, 12]. The point of this paper is to obtain
simultaneous approximation w.r.t. a class of distributions
for problems much more general than those studied in [4,
10, 11, 12] — which are confined to problems with symmet-
ric bidders and/or environments — and via simpler mecha-
nisms, and with better approximation guarantees. For ex-
ample, our simple Single Sample mechanism is reminiscent
of the “Pairing Mechanism” studied in [7], but the latter is
not constant-competitive in the revenue benchmark analy-
sis framework. For a different example, for simultaneous
approximation in digital goods auctions with an unknown
i.i.d. regular valuation distribution, we achieve an approxi-
mation factor of 1

2
(Remark 3.7); in the revenue benchmark

analog of this problem (a worst-case approximation of the
benchmark F2), no truthful auction has an approximation
factor better than .42 [6].

2. PRELIMINARIES
This section reviews standard terminology and facts about

Bayesian-optimal mechanism design. We encourage the reader
familiar with these to skip to Section 3.

Environments.
An environment is defined by a set E of bidders, and a

collection I ⊆ 2E of feasible sets of bidders, which are the
subsets of bidders that can simultaneously “win”. We al-
ways assume that the set system (E, I) is downward-closed,
meaning that if T ∈ I and S ⊆ T then S ∈ I. Each bid-

der has a publicly observable attribute drawn from a known
set A. We assume that each bidder with attribute a has a
private valuation for winning that is an independent draw
from a distribution Fa. We sometimes denote an environ-
ment by a tuple Env = (E, I, A, (ai)i∈E , (Fa)a∈A). Every
subset T ⊆ E of bidders induces a subenvironment in a
natural way, with feasible sets {S ∩ T}S∈I .

We classify an environment according to its set system,
the attributes of its bidders, and its underlying valuation dis-
tributions. In a matroid environment, the system (E, I) is a
matroid.3 Examples include digital goods (where I = 2E),
k-unit auctions (where I is all subsets of size at most k),
and certain unit-demand matching markets (corresponding
to a transversal matroid). An environment is non-singular
if there is no bidder with a unique attribute, and is i.i.d.
if every bidder has the same attribute. An environment is
regular or m.h.r. if every valuation distribution is a regu-
lar distribution or an m.h.r. distribution (as defined below),
respectively.

Truthful Mechanisms.
Name the bidders E = {1, 2, . . . , n}. A (deterministic)

mechanismM comprises an allocation rule x that maps ev-
ery bid vector b to a characteristic vector of a feasible set (in
{0, 1}n), and a payment rule p that maps every bid vector
b to a non-negative payment vector in [0,∞)n. We insist
on individual rationality in the sense that pi(b) ≤ bi · xi(b)
for every i and b. We assume that each bidder i aims to
maximize the quasi-linear utility ui(b) = vi · xi(b)− pi(b),
where vi is its private valuation for winning. We say M is
truthful if for every bidder i and fixed bids b−i of the oth-
ers, bidder i maximizes its utility by setting its bid bi to its
private valuation vi. Since we only consider truthful mech-
anisms, in the rest of the paper we use valuations and bids
interchangeably. A well-known characterization of truthful
mechanisms in single-parameter settings [16, 1] says that a
mechanism (x,p) is truthful if and only if the allocation rule
is monotone — xi(b

′
i,b−i) ≥ xi(b) for every i, b, and b′i ≥ bi

— and the payment rule is given by a certain formula of the
allocation rule. We often specify a truthful mechanism by
its monotone allocation rule, with the understanding that it
is supplemented with the unique payment rule that yields a
truthful mechanism.

For example, the VCG mechanism, which chooses the fea-
sible set S that maximizes the welfare

∑
i∈S vi, has a mono-

tone allocation rule and can be made truthful using suitable
payments. Two variants of the VCG mechanism are also im-
portant in this paper. Let ri be a reserve price for bidder i.
The VCG mechanism with eager reserves r works as follows,
given bids v: (1) delete all bidders i with vi < ri; (2) run the
VCG mechanism on the remaining bidders to determine the
winners; (3) charge each winning bidder i the larger of ri and
its VCG payment in step (2). In the VCG mechanism with
lazy reserves r, steps (1) and (2) are reversed. Both of these
mechanisms are feasible and truthful in every downward-
closed environment. The two variants are equivalent in suf-
ficiently simple environments (as we show in Corollary 3.4),
but are different in general.

The efficiency of welfare of the outcome of a mechanism

3Recall that a matroid (e.g. [18]) is a ground set E and a non-
empty downward-closed collection I ⊆ 2E of independent
sets such that whenever S, T ∈ I with |T | < |S|, there is
some i ∈ S \ T such that T ∪ {i} ∈ I.



is the sum of the winners’ valuations, and the revenue is the
sum of the winners’ payments (which can only be less). We
write EffM(Env) and RevM(Env) for the expected effi-
ciency and expected revenue of the mechanismM in the en-
vironment Env, respectively, where the expectation is over
the random bidder valuations.

Bayesian-Optimal Auctions.
Let F be (the cumulative distribution function of) a distri-

bution. For simplicity, we assume that the distribution has
a finite support in the form of a closed interval [l, h], and has
a positive and smooth density function. When convenient,
we assume that l = 0; a simple “shifting argument” shows
that this is the worst case for approximate revenue guar-
antees. The virtual valuation function w.r.t. F is defined

as ϕF (v) = v − 1/h(v), where h(v) = f(v)
1−F (v)

is the hazard

rate function of F . This paper works with two different as-
sumptions on valuation distributions. A regular distribution
has, by definition, a nondecreasing virtual valuation func-
tion. A monotone hazard rate (m.h.r.) distribution has a
nondecreasing hazard rate function. Many important distri-
butions (exponential, uniform, Gaussian, etc.) are m.h.r.;
intuitively, these are distributions with tails no heavier than
the exponential distribution. Regular distributions include
all m.h.r. distributions along with some additional distribu-
tions with heavier tails (e.g., some power-law distributions).

Myerson [16] characterized the expected revenue-maximizing
mechanisms for single-parameter environments using the fol-
lowing key lemma.

Lemma 2.1 (Myerson’s Lemma) For every truthful mech-
anism (x,p), the expected payment of a bidder i with valua-
tion distribution Fi satisfies

Ev[pi(v)] = Ev[ϕFi(vi) · xi(v)].

Moreover, this identity holds even after conditioning on the
bids v−i of the bidders other than i.

In words, the (conditional) expected payment of a bidder
is precisely its (conditional) expected contribution to the vir-
tual welfare. It follows that if the distributions are regular,
then a revenue-maximizing truthful mechanism chooses a
feasible set S that maximizes the virtual welfare

∑
i∈S ϕFi(vi).

(The role of regularity is to ensure that this allocation rule is
indeed monotone; otherwise, additional ideas are needed [16].)

3. REVENUE GUARANTEES WITH A SIN-
GLE SAMPLE

In this section we design a prior-free auction that simul-
taneously approximates the optimal expected revenue to
within a constant factor in every non-singular m.h.r. single-
parameter environment. Section 3.1 defines our mechanism.
Section 3.2 introduces some of our main analysis techniques
in the simpler setting of matroid environments with i.i.d.
valuation distributions, where we can also obtain better ap-
proximation bounds than in the general case. Section 3.3
proves our main result for general downward-closed environ-
ments. Section 3.5 notes that our analysis carries over easily
to computationally efficient variants of our mechanism.

3.1 The Single Sample Mechanism
We analyze the following mechanism.

Definition 3.1 (Single Sample) Given a non-singular down-
ward-closed environment Env = (E, I, A, (ai)i∈E , (Fa)a∈A),
the Single Sample mechanism is the following:

(1) For each represented attribute a, pick a reserve bidder
ia with attribute a uniformly at random from all such
bidders.

(2) Run the VCG mechanism on the sub-environment in-
duced by the non-reserve bidders to obtain a prelimi-
nary winning set P .

(3) For each bidder i ∈ P with attribute a, place i in the
final winning set W if and only if vi ≥ via . Charge
every winner i ∈ W with attribute a the maximum of
its VCG payment computed in step (2) and the reserve
price via .

In other words, we randomly pick one bidder of each at-
tribute to set a reserve price for the other bidders with that
attribute, and then run the VCG mechanism with lazy re-
serves on the remaining bidders. The Single Sample mech-
anism is clearly prior-free — that is, it is defined indepen-
dently of the Fa’s — and it is easy to verify that it is truthful.

3.2 Warm-Up: I.I.D. Matroid Environments
To illustrate some of our main techniques in a relatively

simple setting, we first consider matroid environments in
which all bidders have the same attribute (i.e., have i.i.d.
valuations). For such settings, we only need to assume that
the common valuation distribution F is regular (recall Sec-
tion 2 for definitions).

Theorem 3.2 (I.I.D. Matroid Environments) For ev-
ery i.i.d. regular matroid environment with at least n ≥ 2
bidders, the expected revenue of the Single Sample mecha-
nism is at least a 1

2
· n−1

n
fraction of that of an optimal

mechanism for the environment.

The factor of (n− 1)/n can be removed with a minor tweak
to the mechanism (Remark 3.7). Section 4 considers the
case of large n and shows how to use multiple samples to
obtain better approximation factors.

What’s so special about i.i.d. regular matroid environ-
ments? Define a monopoly reserve price of a valuation dis-
tribution F as a price in argmaxp[p · (1 − F (p))]. Then,
Myerson’s Lemma easily implies the following.

Proposition 3.3 (E.g. [5]) In every i.i.d. regular matroid
environment, the VCG mechanism with eager monopoly re-
serves is a revenue-maximizing mechanism.

The matroid assumption also allows us to pass from eager
to lazy reserves.

Corollary 3.4 In every i.i.d. regular matroid environment,
the VCG mechanism with lazy monopoly reserves is a revenue-
maximizing mechanism.

Proof. The VCG mechanism can be implemented in a
matroid environment via the greedy algorithm: bidders are
considered in nonincreasing order of valuations, and a bidder



is added to the winner set if and only if doing so preserves
feasibility (given the previous selections). With a common
reserve price r, it makes no difference whether bidders with
valuations below r are thrown out before or after running
the greedy algorithm. Thus in matroid environments, the
VCG mechanism with a lazy common reserve is equivalent
to the VCG mechanism with an eager common reserve.

Proving an approximate revenue-maximization guarantee
for the Single Sample mechanism thus boils down to un-
derstanding the two ways in which it differs from the VCG
mechanism with lazy monopoly reserves — it throws away
a random bidder, and it uses a random reserve rather than
a monopoly reserve. The damage from the first difference is
easy to control.

Lemma 3.5 In expectation over the choice of the reserve
bidder, the expected revenue of an optimal mechanism for the
environment induced by the non-reserve bidders is at least
an (n− 1)/n fraction of the expected revenue of an optimal
mechanism for the original environment.

Proof. Condition first on the valuations of all bidders
and let S denote the winners under the optimal mechanism
for the full environment. Since the reserve bidder is cho-
sen independently of the valuations, each bidder of S is a
non-reserve bidder with probability (n − 1)/n. By the lin-
earity of expectation, the expected virtual welfare — over
the choice of the reserve bidder, with all valuations fixed —
of the (feasible) set of non-reserve bidders of S is (n− 1)/n
times that of S, and the expected maximum-possible vir-
tual welfare in the sub-environment is at least this. Taking
expectations over bidder valuations and applying Myerson’s
Lemma (Lemma 2.1) completes the proof.

The crux of the proof of Theorem 3.2 is to show that a
random reserve price serves as a sufficiently good approxi-
mation of a monopoly reserve price. The next key lemma
formalizes this goal for the case of a single bidder. Its proof
uses a geometric property of regular distributions. To ex-
plain it, for a regular distribution F , define the normal-
ized revenue function R as R(q) = q · F−1(1 − q) for all
q ∈ [0, 1]. Here, q represents the probability of a sale to a
bidder with a valuation drawn from F , and R(q) the cor-
responding expected revenue. We also define the revenue
function by R̂(p) = p(1− F (p)), which is the same quantity

parameterized by the selling price p. That is, R̂(p) is the ex-
pected revenue of a single-item auction with posted price p
and a single bidder with valuation drawn from F . An ex-
ample of a normalized revenue function is shown in Figure
1. One can check easily that the derivative R′(q) equals the
virtual valuation ϕF (p), where p = F−1(1 − q). Regularity
of F thus implies that R′(q) is nonincreasing and hence R is
concave. Also, assuming that the support of F is [0, h] for
some h > 0 — recall Section 2 — we have R(0) = R(1) = 0.

Lemma 3.6 Let F be a regular distribution with monopoly
price r∗ and revenue function R̂. Let v denote a random
valuation from F . For every nonnegative number t ≥ 0,

Ev

[
R̂(max{t, v})

]
≥ 1

2
· R̂(max{t, r∗}). (1)

Proof. For intuition, first suppose that t = 0. Then
the claim is equivalent to the assertion that the expecta-
tion of R(q) is at least half of R(q∗), where q and q∗ solve

Figure 1: The normalized revenue function of a reg-
ular distribution.

q = 1−F (v) and q∗ = 1−F (r∗), respectively. Since q is uni-
formly distributed on [0, 1], Eq[R(q)] equals the area under
the curve defined by R. By concavity, this area is at least
the area of the triangle in Figure 1, which is 1

2
· 1 ·R(q∗) =

1
2
· R̂(r∗).
If 0 < t < r∗, then the right-hand side of (1) is unchanged

while the left-hand side of (1) only increases — the only
difference is to sometimes use a selling price t that is better
than the previous selling price v. (We are using concavity
of the revenue curve here.) Finally, if t > r∗, then the

right-hand side of (1) is R̂(t); and the left-hand side is a

convex combination of R̂(t) (when v ≤ t) and the expected

value of R̂(q) when q is drawn uniformly from [t, 1], which

by concavity is at least R̂(t)/2.

We now prove Theorem 3.2 by extending the approxima-
tion bound in Lemma 3.6 from a single bidder to all bidders
and blending in Lemma 3.5.

Proof of Theorem 3.2: Condition on the choice of the reserve
bidder j. Fix a non-reserve bidder i and condition on all val-
uations except those of i and j. This is enough information
to uniquely determine the VCG threshold t(v−i) for i. (Re-
call that j, as a reserve bidder, does not participate in the
VCG computation in step (2) of the Single Sample mecha-
nism.) After this conditioning, we can analyze bidder i as
in a single-bidder auction, with an extra external reserve
price of t(v−i). Let r∗ and R̂ denote the monopoly price
and revenue function for the underlying regular distribu-
tion F , respectively. The conditional expected revenue that i
contributes to the revenue-maximizing solution in the sub-
environment of non-reserve bidders is R̂(max{t(v−i), r∗}).
The conditional expected revenue that i contributes to the

Single Sample mechanism is Evj

[
R̂(max{t(v−i), vj})

]
. Since

vi, vj are independent samples from the regular distribu-
tion F , Lemma 3.6 implies that the latter conditional ex-
pectation is at least 50% of the former. Taking expectations
over the previously fixed valuations of bidders other than i
and j, summing over the non-reserve bidders i and apply-
ing linearity of expectation, and finally taking the expec-



tation over the choice of the reserve bidder j and applying
Lemma 3.5 proves the theorem. �

Remark 3.7 (Optimized Version of Theorem 3.2) We
can improve the approximation guarantee in Theorem 3.2
from 1

2
· n−1

n
to 1

2
. Instead of discarding the reserve bid-

der j, we include it in the VCG computation in step (2) of
the Single Sample mechanism. An arbitrary other bidder h
is used to set a reserve price vh for the reserve bidder j.
Like the other bidders, the reserve bidder is included in the
final winning set W if and only if it is chosen by the VCG
mechanism in step (2) and also has a valuation above its
reserve price (vj ≥ vh). Its payment is then the maximum
of its VCG payment and vh.

The key observation is that, for every choice of a reserve
bidder j, a non-reserve bidder i, and valuations v, bidder i
wins with bidder j included in the VCG computation in
step (2) if and only if it wins with bidder j excluded from
the computation. Like Corollary 3.4, this observation can
be derived from the fact that the VCG mechanism can be
implemented via a greedy algorithm in i.i.d. regular matroid
environments. If vi ≤ vj , then i cannot win in either case
(it fails to clear the reserve); and if vi > vj , then the greedy
algorithm considers bidder i before j even if the latter is
included in the VCG computation.

Thus, the expected revenue from non-reserve bidders is
the same in both versions of the Single Sample mechanism.
In the modified version, the obvious analog of Lemma 3.5 for
a single bidder and Lemma 3.6 imply that the reserve bid-
der also contributes, in expectation, a 1

2
· 1
n

fraction of the
expected revenue of an optimal mechanism. Combining the
contributions of the reserve and non-reserve bidders yields
an approximation guarantee of 1

2
for the modified mecha-

nism. Simple examples show that this analysis, and hence
also the bound in Lemma 3.6, is tight in the worst case.

3.3 General Downward-Closed Environments
We now give our main result for the performance of the

Single Sample mechanism in general downward-closed en-
vironments. We first note that, unlike in the special case
of matroid environments, the mechanism does not admit
a constant-factor approximate revenue guarantee for every
i.i.d. regular environment; see the full version for details.

Statement of Main Result.
Duly warned by the example mentioned above, we con-

sider only (not necessarily identical) m.h.r. valuation distri-
butions in this section. Our main result is a constant-factor
guarantee for the Single Sample mechanism in arbitrary non-
singular m.h.r. environments, even with respect to the ex-
pected optimal welfare.

Theorem 3.8 (General Environments) For every m.h.r.
environment with at least κ ≥ 2 bidders of every present at-
tribute, the expected revenue of the Single Sample mechanism
is at least a 1

4
· κ−1

κ
fraction of the expected optimal welfare

in the environment.

The bound in Theorem 3.8 is 1/8 when κ is its minimum al-
lowable value of 2, and it converges quickly to 1/4 as κ grows.
Our analysis of the Single Sample mechanism is tight for all
values of κ ≥ 2, as shown by a digital goods environment
with κ bidders with valuations drawn i.i.d. from an exponen-
tial distribution with rate 1: the expected optimal welfare

is κ, and a calculation shows that the expected revenue of
Single Sample is (κ− 1)/4.

Since welfare obviously upper bounds the revenue obtain-
able by any mechanism, we have the following corollary.

Corollary 3.9 For every m.h.r. environment with at least
κ ≥ 2 bidders of every present attribute, the expected revenue
of the Single Sample mechanism is at least a 1

4
· κ−1
κ

fraction
of that of the optimal mechanism for the environment.

A Weaker Result via VCG with Lazy Monopoly Reserve
Prices.

General downward-closed environments pose a number of
challenges absent from i.i.d. matroid environments. The ex-
pected revenue-maximizing mechanism is generally compli-
cated — nothing as simple as the VCG mechanism with
suitable reserve prices. Eager and lazy reserve prices are no
longer equivalent, and the lazy reserve prices in the Single
Sample mechanism are crucial in our analysis.

The simplest approach to establishing a constant-factor
approximation guarantee for the Single Sample mechanism
is to prove that the VCG mechanism with lazy monopoly
reserves is a reasonable approximation of an optimal mech-
anism, and then proceed as in the previous section. We
prove such a result next. We believe that this is interesting
in its own right, and it gives a slightly weaker version of
Theorem 3.8 as a corollary. We then prove the better bound
claimed in the theorem via a more delicate argument.

One ingredient of the analysis of the previous section car-
ries over easily to the present one — controlling the expected
lost welfare from discarded reserve bidders.

Lemma 3.10 The expected optimal welfare in the sub-
environment induced by non-reserve bidders is at least a (κ−
1)/κ fraction of that in the original environment.

The proof of Lemma 3.10 is essentially the same as that
of Lemma 3.5, with valuations assuming the role previously
played by virtual valuations. In contrast to Remark 3.7,
discarding reserve bidders before the VCG computation in
step (2) is important for the analysis of the Single Sample
mechanism in non-matroid environments.

As in the previous section, we require a technical lemma
about the single-bidder case.

Lemma 3.11 Let F be an m.h.r. distribution with monopoly
price r∗ and revenue function R̂. Let V (t) denote the ex-
pected welfare of a single-item auction with a posted price
of t and a single bidder with valuation drawn from F . For
every nonnegative number t ≥ 0,

R̂(max{t, r∗}) ≥ 1

e
· V (t). (2)

Proof. Let s denote max{t, r∗}. Recall that, by the def-

inition of the hazard rate function, 1 − F (x) = e−H(x) for
every x ≥ 0, where H(x) denotes

∫ x
0
h(z)dz. Note that since

h(z) is non-negative and nondecreasing, H(x) is nondecreas-
ing and convex. We can write the left-hand side of (2) as

s ·(1−F (s)) = s ·e−H(s) and, for a random sample v from F ,

V (t) = Pr [v ≥ t] ·E[v | v ≥ t]

= e−H(t) ·
[
t+

∫ ∞
t

e−(H(v)−H(t))dv

]
. (3)



By convexity of the function H, we can lower bound its value
using a first-order approximation at s:

H(v) ≥ H(s) +H ′(s)(v − s) = H(s) + h(s)(v − s) (4)

for every v ≥ 0. There are now two cases. If t ≤ r∗ = s, then
h(s) = 1/s since r∗ is a monopoly price.4 Starting from (3)
and using that H is nondecreasing, and then substituting (4)
yields

V (t) ≤
∫ ∞
0

e−H(v)dv

≤
∫ ∞
0

e−(H(s)+ v−s
s

)dv

= e · s · e−H(s).

If r∗ ≤ t = s, then the m.h.r. assumption implies that h(s) ≥
1/s and (4) implies that H(v) ≥ H(t)+(v−t)/t for all v ≥ t.
Substituting into (3) gives

V (t) ≤ e−H(t) ·
[
t+

∫ ∞
t

e−(H(t)+ v−t
t
−H(t))dv

]
≤ e−H(t) ·

∫ ∞
0

e−
v−t
t dv

= e · s · e−H(s),

where in the second inequality we use that e−(v−t)/t ≥ 1 for
every v ≤ t.

Lemma 3.11 implies that the expected revenue of the VCG
mechanism with lazy reserve prices is competitive with the
expected optimal welfare in every downward-closed environ-
ment with (not necessarily identical) m.h.r. valuation distri-
butions.

Theorem 3.12 (VCG with Lazy Monopoly Reserves)
For every m.h.r. environment, the expected revenue of the
VCG mechanism with lazy monopoly reserves is at least a
1/e fraction of the expected efficiency of the VCG mecha-
nism.

Proof. Fix a bidder i and valuations v−i. This deter-
mines a winning threshold t for bidder i under the VCG
mechanism (with no reserves). Lemma 3.11 implies that the
conditional expected revenue obtained from i in the VCG
mechanism with lazy monopoly reserves is at least a 1/e
fraction of the conditional expected welfare obtained from i
in the VCG mechanism (with no reserves). Taking expecta-
tions over v−i and summing over all the bidders proves the
theorem.

Considering a single bidder with an exponentially distributed
valuation shows that the bounds in Lemma 3.11 and Theo-
rem 3.12 are tight in the worst case.

The arguments in Section 3.2 directly imply that the Sin-
gle Sample mechanism obtains essentially half of the ex-
pected revenue of the VCG mechanism with lazy monopoly
reserves. Mimicking the proof of Theorem 3.2, with Lemma 3.10
replacing Lemma 3.5, gives the following weaker version of
Theorem 3.8.

4One proof of this follows from the first-order condition
for the revenue function p(1 − F (p)); alternatively, ap-
plying Myerson’s Lemma to the single-bidder case shows
that r∗ = ϕ−1

F (0) and hence r∗ − 1/h(r∗) = ϕF (r∗) = 0.

Theorem 3.13 (A Weaker Single Sample Guarantee)
For every m.h.r. environment with at least κ ≥ 2 bidders of
every present attribute, the expected revenue of the Single
Sample mechanism is at least a 1

2e
· κ−1

κ
fraction of the ex-

pected optimal welfare in the environment.

Proof of Main Result (Theorem 3.8).
To obtain the better bound claimed in Theorem 3.8, we

need to optimize jointly the two single-bidder guarantees in
Lemmas 3.6 and 3.11. This is done in the next lemma.

Lemma 3.14 Let F be an m.h.r. distribution with monopoly
price r∗ and revenue function R̂, and define V (t) as in
Lemma 3.11. For every nonnegative number t ≥ 0,

Ev

[
R̂(max{t, v})

]
≥ 1

4
· V (t). (5)

Proof. Recall from the proof of Lemma 3.11 that V (t)
can be written as in (3); we show that the left-hand side
of (5) is at least 25% of that quantity.

Consider two i.i.d. samples v1, v2 from F . We interpret v2
as the random reserve price v in (5) and v1 as the valuation
of the single bidder. The left-hand side of (5) is equivalent
to the expectation of a random variable that is equal to t if
v2 ≤ t ≤ v1, which occurs with probability F (t) · (1−F (t));
equal to v2 if t ≤ v2 ≤ v1, which occurs with probability
1
2
(1− F (t))2; and equal to zero, otherwise. Hence,

Ev

[
R̂(max{t, v})

]
≥ 1

2
(F (t) · (1− F (t)) · t (6)

+(1− F (t))2 ·E[min{v1, v2} | min{v1, v2} ≥ t]
)

=
1

2
(1− F (t)) ·

(
t · F (t) + (1− F (t)) ·

[
t

+ e2H(t)

∫ ∞
t

e−2H(v)dv
])

≥ 1

2
(1− F (t)) ·

[
t+ eH(t)

∫ ∞
t

e−H(2v)dv

]
(7)

=
1

4
(1− F (t)) ·

[
2t+

∫ ∞
2t

e−(H(v)−H(t))dv

]
≥ 1

4
(1− F (t)) ·

[
t+

∫ ∞
t

e−(H(v)−H(t))dv

]
, (8)

where in (7) and (8) we are using that H is non-negative,
nondecreasing, and convex. Comparing (3) and (8) proves
the lemma.

The proof of Theorem 3.8 is the same as that of Theo-
rem 3.2, with the following substitutions: the welfare of the
VCG mechanism (with no reserves) plays the previous role
of the revenue of the VCG mechanism with lazy monopoly
reserves; Lemma 3.14 replaces Lemma 3.6; and Lemma 3.10
takes the place of Lemma 3.5.

3.4 Non-I.I.D. Matroid Environments
We can also use a different mechanism to obtain a constant

fraction of the optimal expected revenue in matroid environ-
ments with valuation distributions that are not necessarily
identical. We provide here only one simple approach, and
defer proofs and optimized constants to the full version.



Definition 3.15 (Single Sample 2) Given a non-singular
downward-closed environment Env, the Single Sample 2 (SS2)
mechanism creates a new environment Env′ by, for every at-
tribute a, arbitrarily dividing bidders with attribute a into
pairs and creating a new unique attribute for each pair.
Then, the SS2 mechanism runs the Single Sample mecha-
nism on Env′.

Theorem 3.16 For every regular matroid environment with
an even number of bidders of every present attribute, the ex-
pected revenue of the Single Sample 2 mechanism is at least
a 1

16
fraction of that of an optimal mechanism for the envi-

ronment.

The assumption that there is an even number of bidders of
each attribute can be removed at the expense of a worse con-
stant approximation factor. The high-level idea of the proof
is to combine arguments used in the proof of Lemma 3.6
with a non-trivial reduction to a “Bulow-Klemperer-type”
result in [11].

3.5 Computationally Efficient Variants
In the second step of the Single Sample mechanism, a

different mechanism can be swapped in for the VCG mech-
anism. One motivation for using a different mechanism is
computational efficiency (although this is not the chief focus
of this paper). For example, for combinatorial auctions with
single-minded bidders, implementing the VCG mechanism
requires the solution of a packing problem that is NP -hard,
even to approximate.

By inspection, the proof of Theorem 3.8 implies the follow-
ing more general statement: if step (2) of the Single Sample
mechanism uses a truthful mechanism guaranteed to pro-
duce a solution with at least a 1/c fraction of the maximum
welfare, then the expected revenue of the corresponding Sin-
gle Sample mechanism is at least a 1

4c
κ−1
κ

fraction of the
expected optimal welfare (whatever the underlying m.h.r.
environment). For example, for knapsack auctions — where
each bidder has a public size and feasible sets of bidders
are those with total size at most a given amount — we can
substitute the truthful FPTAS of Briest et al. [2]. For com-
binatorial auctions with single-minded bidders, we can use
the algorithm of Lehmann et al. [14] to obtain an O(

√
m)-

approximation in polynomial time. This factor is optimal
for polynomial-time approximation (up to constant factors),
under suitable complexity assumptions [14].

4. REVENUE GUARANTEES WITH MUL-
TIPLE SAMPLES

Increasing the number of samples from the underlying
valuation distributions should allow for better performance.
This section modifies the Single Sample mechanism to achieve
such improved guarantees, and provides quantitative and
distribution-independent polynomial bounds on the number
of samples required to achieve a given approximation factor.

4.1 Estimating Monopoly Reserve Prices
Improving the revenue guarantees of Section 3 via multi-

ple samples requires thoroughly understanding the following
simpler problem: Given an accuracy parameter ε and a reg-
ular distribution F , how many samples m from F are needed
to compute a reserve price r that is (1−ε)-optimal, meaning

that R̂(r) ≥ (1 − ε) · R̂(r∗) for a monopoly reserve price r∗

for F? (Recall from Section 3.2 that R̂(p) = p · (1− F (p)).)
We pursue bounds on m that depend only on ε and not on
the distribution F — such bounds do not follow from the
Law of Large Numbers and must make use of the regularity
assumption.

Given m samples from F , v1 ≥ v2 ≥ · · · ≥ vm, an obvious
idea is to use the reserve price that is optimal for the corre-
sponding empirical distribution, which we call the empirical
reserve:

argmax
i≥1

i · vi. (9)

Interestingly, this naive approach does not in general give
distribution-independent polynomial sample complexity bounds.
Precisely, we show in the full version that for every m there
is a regular distribution F such that, with constant probabil-
ity, the empirical reserve (9) is not 1

2
-optimal. Our solution

is to forbid the largest samples from acting as reserve prices,
leading to a quantity we call the guarded empirical reserve
(w.r.t. an accuracy parameter ε):

argmax
i≥εm

i · vi. (10)

We can use the guarded empirical reserve to prove distribution-
independent polynomial bounds on the sample complexity
needed to estimate the monopoly reserve of a regular distri-
bution.

Lemma 4.1 (Estimating the Monopoly Reserve) For
every regular distribution F and sufficiently small ε, δ > 0,
the following statement holds: with probability at least 1− δ,
the guarded empirical reserve (10) of m ≥ c(ε−3(ln ε−1 +
ln δ−1)) samples from F is a (1−ε)-optimal reserve, where c
is a constant that is independent of F .

Proof. Set γ = ε/11 and consider m samples v1 ≥ v2 ≥
· · · ≥ vm from F . Define qt = 1 − F (vt) and q∗ = 1 −
F (r∗), where r∗ is a monopoly price for F . Since the q’s
are i.i.d. samples from the uniform distribution on [0, 1], the
expected value of the quantile qt is t/(m + 1), which we
estimate by t/m for simplicity. An obvious approach is to
use Chernoff bounds to argue that each qt is close to this
expectation, followed by a union bound. Two issues are: for
small t’s, the probability that t/m is a very good estimate
of qt is small; and applying the union bound to such a large
number of events leads to poor probability bounds. In the
following, we restrict attention to a carefully chosen small
subset of quantiles, and take advantage of the properties of
the normalized revenue functions of regular distributions to
get around these issues.

First we choose an integer index sequence 0 = t0 < t1 <
· · · < tL = m in the following way. Let t0 = 0 and t1 =
bγmc. Inductively, if ti is defined for i ≥ 1 and ti < m,
define ti+1 to be the largest integer in {1, . . . ,m} such that
ti < ti+1 ≤ (1 + γ)ti. If m = Ω(γ−2), then ti + 1 ≤ (1 + γ)ti
for every ti ≥ γm and hence such a ti+1 exists. Observe
that L ≈ log1+γ

1
γ

= O(γ−2) and ti+1 − ti ≤ γm for every

i ∈ {0, . . . , L− 1}.
We claim that, with probability 1, a sampled quantile qt

with t ≥ γm differs from t/m by more than a (1 ± 3γ)
factor only if some quantile qti with i ∈ {1, 2, . . . , L} differs
from ti/m by more than a (1 ± γ) factor. For example,

suppose that qt >
(1+3γ)t
m

with t ≥ γm; the other case is



symmetric. Let i ∈ {1, 2, . . . , L} be such that ti ≤ t ≤ ti+1.
Then

qti+1 ≥ qt >
(1 + 3γ)t

m
≥ (1 + 3γ)ti

m

≥ (1 + 3γ)ti+1

(1 + γ)m
≥ (1 + γ)ti+1

m
,

as claimed.
We next claim that the probability that qti differs from

ti/m by more than a (1±γ) factor for some i ∈ {1, 2, . . . , L}
is at most 2Le−γ

3m/4. Fix i ∈ {1, 2, . . . , L}. Note that qti >
(1 + γ) ti

m
only if less than ti samples have q-values at most

(1+γ) ti
m

. Since the expected number of such samples is (1+
γ)ti, Chernoff bounds (e.g. [15]) imply that the probability
that qti > (1 + γ) ti

m
is at most exp{−γ2ti/3(1 + γ)} ≤

exp{−γ2ti/4} ≤ exp{−γ3m/4}, where the inequalities use
that γ is at most a sufficiently small constant and that ti ≥
γm for i ≥ 1. A similar argument shows that the probability
that qti < (1 − γ) ti

m
is at most exp{−γ3m/4}, and a union

bound completes the proof of the claim. Observe that if
m = Ω(γ−3(logL + log δ−1)) = Ω(ε−3(log ε−1 + log δ−1)),
then this probability is at most δ.

Now condition on the event that every quantile qti with
i ∈ {1, 2, . . . , L} differs from ti/m by at most a (1±γ) factor,
and hence every quantile qt with t ≥ γm differs from t/m by
at most a (1±3γ) factor. We next show that there is a candi-
date for the guarded empirical reserve (10) which, if chosen,
has good expected revenue. Choose i ∈ {0, 1, . . . , L− 1} so
that ti/m ≤ q∗ ≤ ti+1/m. Define t∗ as ti if q∗ ≥ 1/2 and
ti+1 otherwise. Assume for the moment that q∗ ≤ 1/2. By
the concavity of normalized revenue function R(q) — recall
Section 3.2 — R(qti+1) lies above the line segment between
R(q∗) and R(1). Since R(1) = 0, this translates to

R(qt∗) ≥ R(q∗) ·
1− qti+1

1− q∗ ≥ R(q∗) ·
1− (1 + 3γ)

(
ti
m

+ γ
)

1− ti
m

≥ (1− 5γ) ·R(q∗),

where in the final inequality we use that ti
m
≤ 1

2
and γ is

sufficiently small. For the case when q∗ ≥ 1
2
, a symmet-

ric argument (using R(0) instead of R(1) and qti instead
of qti+1) proves that R(qt∗) ≥ (1− 5γ) ·R(q∗).

Finally, we show that the guarded empirical reserve also
has good expected revenue. Let the maximum in (10) cor-
respond to the index t̂. Since t̂ was chosen over t∗, t̂ · vt̂ ≥
t∗ · vt∗ . Using that each of qt̂, qt∗ is approximated up to a
(1± 3γ) factor by t̂/m, t∗/m yields

R(qt) = qt̂vt̂

≥ (1− 3γ)t̂

m
vt̂

≥ (1− 3γ)t∗

m
vt∗

≥ 1− 3γ

1 + 3γ
qt∗vt∗

=
1− 3γ

1 + 3γ
R(qt∗)

≥ (1− 5γ)(1− 3γ)

1 + 3γ
R(q∗)

≥ (1− 11γ)R(q∗).

Since γ = ε/11, the proof is complete.

Remark 4.2 (Optimization for M.H.R. Distributions)
The proof of Lemma 4.1 simplifies slightly and gives a better
bound for m.h.r. distributions. The reason is a simple fact,
first noted in [9, Lemma 4.1], that the selling probability q∗

at the monopoly reserve r∗ for an m.h.r. distribution is at
least 1/e. This means one can take the parameter t1 in the
proof of Lemma 4.1 to be bm/ec instead of bγmc without
affecting the rest of the proof. This saves a γ factor in the
exponent of the bound on the probability that some qti is
not well approximated by ti/m, which translates to a new
sample complexity bound of m ≥ c(ε−2(ln ε−1 + ln δ−1)),
where c is some constant that is independent of the under-
lying distribution. Also, this bound remains valid even for
the empirical reserve (9) — the guarded version in (10) is
not necessary.

4.2 The Many Samples Mechanism
In the following Many Sample mechanism, we assume that

an accuracy parameter ε is given, and use m to denote the
sample complexity bound of Lemma 4.1 (for regular valua-
tion distributions) or of Remark 4.2 (for m.h.r. distributions)
corresponding to the accuracy parameter ε

3
and failure prob-

ability ε
3
. The mechanism is only defined if every present

attribute is shared by more than m bidders.

(1) For each represented attribute a, pick a subset Sa of m
reserve bidders with attribute a uniformly at random
from all such bidders.

(2) Run the VCG mechanism on the sub-environment in-
duced by the non-reserve bidders to obtain a prelimi-
nary winning set P .

(3) For each bidder i ∈ P with attribute a, place i in
the final winning set W if and only if vi is at least
the guarded empirical reserve ra of the samples in Sa.
Charge every winner i ∈W with attribute a the max-
imum of its VCG payment computed in step (2) and
the reserve price ra.

We prove the following guarantees for this mechanism.

Theorem 4.3 (Guarantees for Many Samples) The ex-
pected revenue of the Many Samples mechanism is at least:

(a) a (1 − ε) fraction of that of an optimal mechanism in
every i.i.d. regular matroid environment with at least
n ≥ 3m/ε = Θ(ε−4 log ε−1) bidders;

(b) a (1−ε) 1
e

fraction of the optimal expected welfare in ev-
ery downward-closed m.h.r. environment with at least
κ ≥ 3m/ε = Θ(ε−3 log ε−1) bidders of every present
attribute.

Bidders with i.i.d. and exponentially distributed valuations
show that part (b) of the theorem is asymptotically optimal
(as is part (a), obviously).

Proof. The lower bound on the number of bidders of
each attribute implies that at most an ε/3 fraction of all bid-
ders are designated as reserve bidders. Lemmas 3.5 and 3.10
imply that the expectation, over the choice of reserve bid-
ders, of the expected revenue of an optimal mechanism for
and the expected welfare of the subenvironment induced by
the non-reserve bidders is at least a (1− ε

3
) fraction of that

in the full environment.



Now condition on the reserve bidders, but not on their
valuations. Fix a non-reserve bidder i, and condition on
the valuations of all other non-reserve bidders. Let t denote
the corresponding VCG threshold for i and r∗ a monopoly
price for the valuation distribution F of i. Recall from
Corollary 3.4 that, in an i.i.d. regular matroid environment,
the conditional expected revenue obtained from i using the
price max{r∗, t} is precisely what is obtained by the optimal
mechanism for the subenvironment. Recall from Lemma 3.11
that this conditional expected revenue is at least a 1/e frac-
tion of the conditional expected welfare obtained from bid-
der i by the VCG mechanism in the subenvironment.

The Many Samples mechanism uses the price max{r, t},
where r is the guarded empirical reserve of the reserve bid-
ders that share i’s attribute. By Lemma 4.1 and our choice
of m, r is (1 − ε

3
)-optimal for F with probability at least

1− ε
3
. Concavity of the revenue function (cf., Figure 1) and

an easy case analysis shows that, whenever r is (1 − ε
3
)-

optimal, the conditional expected revenue from i with the
price max{r, t} is at least a (1− ε

3
) fraction of that with the

price max{r∗, t}, for any value of t. Thus, the conditional
expected revenue from i in the Many Samples mechanism is
at least a (1− 2ε

3
) fraction of that of an optimal mechanism

for the subenvironment and at least a (1 − 2ε
3

) 1
e

fraction
of the expected maximum welfare in the subenvironment.
Removing the conditioning on the valuations of other non-
reserve bidders; summing over the non-reserve bidders; and
removing the conditioning on the choice of reserve bidders
completes the proof of the theorem.

Remark 4.4 Our results in this section have interesting im-
plications even in the special case of digital goods auctions.
We note that there is no interference between different bid-
ders in such an auction, so the general case of multiple at-
tributes reduces to the single-attribute i.i.d. case (each at-
tribute can be treated separately).

The Deterministic Optimal Price (DOP) digital goods auc-
tion offers each bidder i a take-it-or-leave offer equal to
the empirical reserve of the other n − 1 bidders. The ex-
pected revenue of the DOP auction converges to that of
an optimal auction as the number n of bidders goes to in-
finity, provided valuations are i.i.d. samples from a distri-
bution with bounded support [6] or from a regular distri-
bution [19]. However, the number of samples required in
previous works [6, 19] to achieve a given degree of approxi-
mation depends on the underlying distribution F , and this
dependence is necessary (as we show in the full version).

As an alternative, consider the variant of DOP that in-
stead uses the guarded empirical reserve (10) of the other
n− 1 bidders to formulate a take-it-or-leave-it offer for each
bidder. Our Lemma 4.1 implies a distribution-independent
bound for this auction: provided the number of bidders is
Ω(ε−3 log ε−1), its expected revenue is at least a (1− ε) frac-
tion of the optimal auction.
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